Intel 8085 Microprocessor

Introduction:

What is a microprocessor?

It is a multifunctional Digital Circuit having both combinational and sequential components implemented in a single
silicon wafer or chip. Unlike simple digital circuits designed and optimized to perform specific tasks, a
microprocessor is a generalized circuit that performs a variety of tasks. The operation of the microprocessor is
selected by external command called instruction. Instructions are internally decoded to generate control signals
enabling hardware resources required to complete the tasks. Let us take an example to understand the multifunction
of a circuit.

Operation

a } 0

Result

Fig.1: A circuit performing different operations on its inputs

The above is a combinational circuit that performs ANDing and ORing on its two inputs ‘a’ & ‘b’ depending upon
the control input ‘Operation’. For Operation = 0, Result = (a AND b) and for Operation = 1, Result = (a OR b).
Further circuit blocks can be added for achieving more functions. Fig. 2 is such a circuit.

Sub S1, SO

Cin |

9

a *~—>
—
[=

Y

» Result

i

v

CarryOut

Fig.2 An one bit Arithmatic & Logic Unit

Prof. (Dr.) Saibal Pradhan, CEMK Page - 1

Intel 8085 Microprocessor

So the operations of the above circuit (can be called a simple microprocessor) can be summarized as:

Control Signals
Opeartion Opcode
SUB Cin S1 S0
AND 0 X 0 0 Ou
OR 0 X 0 1 In
ADD 0 0 1 0 2n
SUB 1 1 1 0 Eu

Instruction Set for the machine will be:

0000 ab
0001 ab
0010ab
1110ab

Since the microprocessor can perform only four operations, 2 bits are enough to represent opcodes. So an instruction
decoder is to be used which takes 2-bit opcode and decodes to generate control signals required for the operations.

External memory is required for storing all the instructions of a task. Also the arrangement for reading instructions
sequencilaly from the memory should be there inside the microprocessor for their execution.

So a microprocessor is:

It is a digital circuit implemented in a single silicon wafer or chip
It contains both combinational and sequential circuit components
It is a general purpose device

It can implement various types of functions

Its operation can be controlled externally

External commands are stored in memory

Man machine interface through I/O ports

EEEREEE

What does a microprocessor do?

i Any electronic system, whatever complex it may be, can be built around a microprocessor

i New feature can be implemented without changing the system hardware in most of the cases.
i Typical block diagram of a AP based system:

Input > ﬁ(P > Output

1L

Memory

Prof. (Dr.) Saibal Pradhan, CEMK Page - 2

Intel 8085 Microprocessor

Basic three functions done by any ﬁP:
i Data transfer

W Arithmetic & logic operations

i Decision making

Classification of ﬁlP:

& Based on the width of data handled by the JéflP for data transfer, arithmetic and logic operations by a single
command or instruction.

i For example: - 4-bit, 8-bit, 16-bit, 32-bit etc.

i Intel 4004 is a 4-bit microprocessor, Intel 8085 is an 8-bit ﬁP, Intel 8088/86 is 16-bit ﬁP etc.

-

It should not be confused with the external data bus width. For example, though the external data bus width of
8088 is 8 bits, it is a 16-bit AP,

,,,,,

Prof. (Dr.) Saibal Pradhan, CEMK Page - 3

Intel 8085 Microprocessor

Internal Block Diagram of 8085A:

INTA RST6.5 TRAP
INTR T RST5.5 RST7 5 SID SOD

Interrupt Control Serial I/0 Control

]/I 8-bit internal data bus I
1 I i) T

| Accumulator-8 | | Tmp reg-8 | | FlgReg-5 | | Instruction Reg-8 | Breg-8 | Creg-8
A lL Dreg-8 | Ereg-8

A 4
Hreg-8 | Lreg-8

| Instruction
i ALU-8 Decoder Stack Pointer-16

Prog Counter-16

+5V
—» GND Incr/Decr A L-16
<1 =P Timing and Control \Z S AV
xz CLKGEN CONTROL STATUS DMA RESET | Addr. Buffer-8 | |Data/Addr Buf-8 |
CLK OUT RD WR ALE S S IOM T HLDA T RESET OUT 1/[
Ready o™ —_— v ADO-AD7
HOLD RESETIN A8-Al5

Programming Model of 8085A:

8 bits
A

(BC)
(DE)
(HL)

> General purpose registers

> | T (O |w
=l Il Rl Ke!

S
N
SP > Special purpose registers
PC
S
— _
\ﬁ
16 bits

Prof. (Dr.) Saibal Pradhan, CEMK Page - 4

Intel 8085 Microprocessor

General Purpose Registers:
= B,C,D,E,H,L
“* They can be used in any manner by the programmer, for house keeping, memory
addressing, arithmetic operation.
“» Flexible to use as six 8-bit registers or as three 16-bit register pairs
“» Valid register pairs are BC, DE, HL

Special Purpose Registers:
= A,F,SP,PC
“» They are used for accumulating results from arithmetic and logic instructions and also for
housekeeping.
“» AF register pair is known as Program status Word (PSW) as they contain the status of the
result after execution of any instruction.

Flag Register:
“* Contains 5 flag bits
“* Most of the arithmetic and logic instructions modify them
“* They reflect the condition of the outcome of the answer from ALU
“* They are used for decision making

F7 F6 F5 F4 F3 F2 F1 FO

S| Z | x [AC| x | P | x [|CY

S =1, if -ve; Z=1, if zero; AC=1, if aux carry; P=1 for even parity (even no of 1’s); CY=I, if
carry/borrow

Example:
1 0 0
81H 7FH 55H
+7FH - 81H OR AAH
Result with Carry | 1| 00H 1| FEH FFH
Flags after the | S=0, Z=1, AC=1, | S=1, Z=0, AC=0, P=0, | S=1, Z=0, AC=0, P=1,
operation P=1, CY=1 CY=1 CY=0
Problem:

What will be contents of the flags after executing the following operations?
XRA, A; ORA, A; SUB A; CMP A

Prof. (Dr.) Saibal Pradhan, CEMK Page - 5

Intel 8085 Microprocessor

Data word formats:
1. Unsigned Integers:
i They are 8 bits, 16 bits or any multiple of 8 bits in width
i 8-bit unsigned integers can be found in 8-bit registers
i They can also be stored in single memory locations
i 106-bit unsigned integers are found in register pairs and in two consecutive memory locations (lower byte in
low numbered memory and higher byte in high numbered memory location)
i Binary weights of 8-bit unsigned integer are:

D7 D6 D5 D4 D3 D2 D1 DO
L a2 | 6y | 3@ | o [® | @ [@ | ©» |
""" Examples: 1000 1001, (89u) =128 + 8 + 1 =137y

Same logic may be extended for 16-bit or higher order integers

2. Signed Integers:

i Single-byte signed integers are 7-bit numbers plus a sign bit
i Left most bit is the sign bit, 0 for +ve & 1 for —ve

i Signed 8-bit integer formats are (in 2’s complement):

Sign Sign

0 7-bit Magnitude 0 7-bit 2°s complement number

Positive Integers Negative Integers

i +ve integers range from 0 to 127
i -ve integers range from —1 to —128 (in 2’s complement format)

,,,,,

i Binary weights of the bit positions for —ve numbers are:

D7 D6 D5 D4 D3 D2 Dl DO

(-128) (+64) (+32) (+16) (+8) +4) (+2) +1)

&« Examples: 0111 1011, (7By) = 64+32+16+8+2+1 = 123
& 1111 1011, (FBy) = -128+32+16+8+2+1 = -5
& Same logic may be extended for 16-bit or higher integers.

3. ASCII data format:
ASCII is the acronym for American Standard Code for Information Interchange
It is used by all manufacturer of computer peripherals
ASCII is a 7-bit code, the 8™ is used to hold the parity bit in a data communications system
In computer systems this bit is often a logic 0.
i Insome printers a 0 in the 8" bit causes it to print ASCII characters and a 1 to print graphics characters

4. BCD data formats:

® BCD is the acronym for Binary Coded Decimal

® BCD is used in I/O devices for human to understand
W Expressed in two ways — Packed and Unpacked BCD
® Packed BCD is stored as two digits per byte

® Examples: 79y in packed BCD is 0111 1001

® Unpacked BCD is stored as single digit per byte

® Example: 7, in unpacked BCD is 0000 0111

Prof. (Dr.) Saibal Pradhan, CEMK Page - 6

Intel 8085 Microprocessor

® Unpacked BCD codes are useful to refer look up table for code conversion etc.
® Microprocessor can also perform BCD operations but not preferred to avoid complication

5. Binary Fractions:

Usually they are expressed in unsigned numbers

19 1 3

E

Floating Point data:
It is similar to scientific notation in base 10

It is used to store mixed as well as integer data
Floating point numbers are often stored in four bytes

EEEEREES

Binary weights from left to right are: 2%, 22,22 | 2 |
Example: 1010 0101 = 2" 4+ 27 + 2 + 2% =0.5+0.125+0.015625+0.00390625 = 0.64453125

Binary fractions can be stored in either byte or two-byte form

23 and so on

The floating point format is suitable to express large numbers

Format of 4-byte (single precision) floating point number is:

31 30 23 22 0
S Exponent Mantissa
- Nh—_ _
N —~—
8 bits 23 bits

& The left most bit indicates the sign of the mantissa

,,,,,

i Next 8 bits are for exponent stored in excess 127 notation

& Exponent in excess 127 is an unsigned integer that is equal to the actual exponent plus 127
i Mantissa is a normalized 23-bit number with a hidden or implied 1 in 24" bit position
-

Examples:

100,0= 1100100, = 1.1001 x 2°

S Exponent Mantissa

0 1000 0101 10010000000000000000000
-12.7040=-1100.11, = 1.10011 x 2*

S Exponent Mantissa
1 1000 0010 10011000000000000000000

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 7

Intel 8085 Microprocessor

Sample Questions and answers

Q1 | Convert the following decimal numbers to 8-bit unsigned integers: 12, 33, 55, 100, 155, 196 and 212

Q2 | Convert the following decimal numbers to 16-bit unsigned integers: 156, 222, 1000, 2009, and 10,000

Q3 | Convert the following 8-bit signed integers to decimal numbers: 1111 1111, 1000 0111, 0110 1000, and 0111

0000.

Q4 | Convert the following decimal numbers to 8-bit signed integers: 12, -12, 32, -63, and —100

Q5 | Write the following decimal numbers as both packed and unpacked BCD numbers: 12, 3, 10, 99, 13, and 712

Q6 | Convert the following decimal numbers to four-byte binary floating point form: 12, -22, 10.5, 0.002, and -4.25.

Q7 | Convert the following 4-byte floating point numbers into decimal numbers:

0100 0001 0100 0000 0000 0000 0000 0000
1011 1111 1000 0000 0000 0000 0000 0000
0100 1000 1110 0000 0000 0000 0000 0000

Answers:
Q1. | Decimal Number Corresponding 8-bit Unsigned | Corresponding Hexadecimal
Binary Number Number
12 0000 1100 0C
33 0010 0001 21
55 00110111 37
100 0110 0100 64
155 1001 1011 9B
196 1100 0100 C4
212 1101 0100 D4
Q2. | Decimal Number Corresponding 16-bit Unsigned | Corresponding Hexadecimal
Binary Number Number
156 0000 0000 1001 1100 009C
222 0000 0000 1101 1110 OODE
1000 0000 0011 1110 1000 03E8
2009 00000111 1101 1001 07D9
10000 0010 0111 0001 0000 2710
Q3. | 8-bit Signed Integers 2's Complement if -ve Corresponding Decimal Number
11111111 0000 0001 -1
1000 0111 0111 1001 -121
0110 1000 - +104
0111 0000 - +112
Q4. | Decimal Number -/+ & 8-bit magnitude 8-bit Binary in 2’s Complement
12 + 0000 1100 0000 1100
-12 - 0000 1100 1111 0100
32 + 0010 0000 0010 0000
-63 - 0011 1111 1100 0001
-100 - 0110 0100 1001 1100
Q5. | Decimal Number Packed BCD (in HEX) Unpacked BCD (in HEX)
12 0001 0010 (12H) 0000 0010 (02H)
0000 0001 (01H)
3 0000 0011 (03H) 0000 0011 (0O3H)
10 0001 0000 (10H) 0000 0000 (00H)
0000 0001 (01H)
99 1001 1001 (99H) 0000 1001 (09H)

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 8

Intel 8085 Microprocessor

0000 1001 (09H)
13 0001 0011 (13H) 0000 0011 (O3H)
0000 0001 (01H)
712 0000 0111 0001 0010 (0712H) 0000 0010 (02H)
0000 0001 (01H)
0000 0111 (07H)
Q6. | Decimal Number Binary with fraction and sign 4-byte floating point binary
12 +1100.0 0 1000 0010 100....................0000
-22 -10110.0 11000 0011 01100...............0000
10.5 +1010.1 0 1000 0010 010100.............0000
0.002 +0.0000 0000 1 001110110 000000.............0000
-4.25 -0100.01 1 1000 0001 000100.............0000
Q7. | 4-byte floating point number Binary with fraction and sign Decimal number
01000 0010 100....................000 | +0.1 x 22 4
10111 1111 000.....................000 -0.0 x 277 0
01001 0001 110....................000 | +0.11 x 2"5"% 3x64x1024 = 196608
Memory Map of 8085A:

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 9

Intel 8085 Microprocessor

FFFF

003C
0038
0034
0034
0030
002C
0028
0024
0020
0018
0010
0008

0000

“* It has 16-bit address lines and 8-bit data lines.
“ It can therefore address 2'° or 2° x 2'° or 64K byte memory locations.

8
bits

RST 7.5

RST 7

RST 6.5

RST 6

RST 5.5

RST 5

TRAP

RST 4

RST3

RST 2

RST 1

‘

RSTO

User
Space

Restart
S

“» Memory locations are numbered from 0000H to FFFFH.

I/0 Space of 8085A:

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 10

Intel 8085 Microprocessor

FF
8-Bit
User
I/0 Ports
00

8085A can address 256 input devices.

It can also address 256 output devices.

They are numbered from 00H to FFH.

Input and Output Devices are identified by RD and WR signals respectively
I/O devices are accessed by IN/OUT instructions.

'EREREE

Prof. (Dr.) Saibal Pradhan, CEMK Page - 11

Intel 8085 Microprocessor

Instruction Set and Programming The 8085

Command Word Formats:
Three different Command Word Formats are used by 8085A

“* One byte long - 204
“» Two-byte long - 18
“* Three-byte long - 24

Total - 246

“* Command Word (Instruction) Formats are:

One-byte Op-Code

Two-byte Op-Code Immediate Data

Op-Code I/O Port Address

Three-byte Op-Code Low-byte Data High-byte Data

Op-Code | Low-order Addr. High-order Addr.

Instruction Set of 8085A:

It can be broken into three main categories:
1. Data Transfer Instructions,
2. Arithmetic & Logic Instructions and
3. Program Control Instructions.

Rules of writing instructions:
[Label:] op-code [des op], [source op] [; Comments]

Fields within 3™ brackets are optional.

Addressing Modes: The way the operands (internal/external resources like registers/meory/IO)
are represented in an instruction is called addressing mode. Addressing modes may be of the
following types:

“» Register addressing

“* Immediate addressing

“* Direct addressing and

“» Register indirect addressing

Prof. (Dr.) Saibal Pradhan, CEMK Page - 12

Intel 8085 Microprocessor

Register addressing
The instruction specifies the registers (B, C, D, E, H, L or A) or the register pairs (BC, DE, HL
or SP) used with the instruction. These are all one byte instructions.
Examples:
MOV B, A; ADD D etc.

Immediate addressing

This mode of addressing is used when constant data are used in a program. The data are placed
immediately following the op-code and stored in the program memory. 8085A has two forms
immediate addressing: 8-bit and 16-bit immediate addressing.

Instruction format:

bytel byte2 byte3

Op-code 8-bit Immediate Data

Op-code | Low byte of 16-bit Data | High byte of 16-bit Data

Examples:
MVI A, 12H; ADI 34H etc.

Direct Addressing
Instructions that directly address the memory always include the memory address of the data.
This address is stored following the op-code in the program. Instruction format is:

bytel byte2 byte3
Op-code | Low order address High order address
Examples:
LDA 1234H; STA 9876H etc.

Register Indirect Addressing:

In some instructions register pairs BC, DE and HL are used to indicate the memory location
containing the operand. This type of addressing the memory indirectly by the memory pointers is
called register indirect addressing. These are all one byte instructions.

Examples:
LDAX B (or D); STAX B (or D) etc.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 13

Intel 8085 Microprocessor

Instruction Naming Conventions:
The mnemonics assigned to the instructions are designed to indicate the function of the
instruction. Instructions fall into the following functional categories:

SL | Mnemonic | Purpose

| Syntax

| Note

Data Transfer Instructions
The data transfer instructions move data between registers or between memory and register.

1 MVI Move Immediate data MVIrd,d8 |rd may be one of 7 8-bit
registers and M. M is the
memory pointed to by HL
register pair.

2 MOV Move data between 8-bit register | MOV rd,rs |rd and rs may be any

to register and between register to combination of 7 8-bit registers
memory pointed to by HL. and M except M, M.

3 LDA Load Accumulator Directly | LDA al6 A =[al6], al6 is 16-bit address

from Memory of'a memory location

4 | STA Store Accumulator Directly in | STA al6 [al6]=A

Memory

5 LHLD Load H & L Registers Directly | LHLD al6 | L =[al6], H=[al6+1]

from Memory
6 | SHLD Store H & L Registers Directly | SHLD al6 | [al6] =L, [al6+1]=H
in Memory

7 | LXI Load Register Pair with 16-bit | LXIp rp may be one of HL, BC, DE,
Immediate data SP.

8 LDAX Load Accumulator from | LDAX rp rp may be one of BC and DE
Address in Register Pair

9 STAX Store Accumulator in Address | STAX rp rp may be one of BC and DE

in Register Pair

10 | XCHG Exchange H & L with D & E XCHG

11 | XTHL Exchange Top of Stack with H | XTHL

&L

Arithmetic Group

The arithmetic instructions are used to perform arithmetic operations

12 | ADI Add Immediate Data to | ADId8 d8 is the 8-bit immediate data

Accumulator
13 | ADD Add to Accumulator ADDr r may be one of 7 8-bit registers
and M
14 | ADC Add to Accumulator Using | ADCr r may be one of 7 8-bit registers
Carry Flag and M

15 | ACI Add Immediate data to | ACIr r may be one of 7 8-bit registers
Accumulator Using Carry and M

16 | SUI Subtract Immediate Data from | SUI d8 d8 is the 8-bit immediate data
Accumulator

17 | SUB Subtract from Accumulator SUB r r may be one of 7 8-bit registers
and M

18 | SBI Subtract Immediate from | SBI d8 d8 is the 8-bit immediate data

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 14

Intel 8085 Microprocessor

Accumulator Using Borrow
(Carry) Flag

19 | SBB Subtract from Accumulator | SBBr r may be one of 7 8-bit registers
Using Borrow (Carry) Flag and M

20 | INR Increment Specified Byte by | INRr r may be one of 7 8-bit registers
One and M

21 | DCR Decrement Specified Byte by | DCRr r may be one of 7 8-bit registers
One and M

22 | INX Increment Register Pair by One | INX rp rp may be one of BC, DE, HL,

SP

23 | DCX Decrement Register Pair by | DCX rp rp may be one of BC, DE, HL,
One SP

24 | DAD Double Register Add; Add | DAD1p rp may be one of BC, DE, HL,
Content of Register Pair to H SP
& L Register Pair

25 | DAA Decimal adjust accumulator | DAA
after BCD addition

Logical Group

This group performs logical (Boolean) operations on data in registers and memory and on

condition flags.

The logical AND, OR, and Exclusive OR instructions enable you to set specific bits in the

accumulator ON or OFF.

26 | ANI Logical AND with Accumulator | ANI d8 d8 is the 8-bit immediate data
Using Immediate Data
27 | ANA Logical AND with Accumulator | ANAr r may be one of 7 8-bit registers
and M
28 | ORA Logical OR with Accumulator | ORAr r may be one of 7 8-bit registers
and M
29 | ORI Logical OR with Accumulator | ORI d8 d8 is the 8-bit immediate data
Using Immediate Data
30 | XRI Exclusive OR Using Immediate | SRI d8 d8 is the 8-bit immediate data
Data
31 | XRA Exclusive Logical OR with | XRA r may be one of 7 8-bit registers
Accumulator and M
32 | CPI Compare Using Immediate Data | CP1 d8 d8 is the 8-bit immediate data
33 | CMP Compare CMPr r may be one of 7 8-bit registers
and M
34 | RLC Rotate Accumulator Left RLC Rotation by one bit position
35 | RRC Rotate Accumulator Right RRC Rotation by one bit position
36 | RAL Rotate Left Through Carry RAL Rotation by one bit position
37 | RAR Rotate Right Through Carry RAR Rotation by one bit position
38 |CMA Complement Accumulator CMA
39 | CMC Complement Carry Flag CMC
40 | STC Set Carry Flag STC
Branch Group:

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 15

Intel 8085 Microprocessor

The branching instructions alter normal sequence of program flow, either unconditionally or
conditionally. The unconditional branching instructions are as follows:

JMP Jump
CALL Call
RET Return

Conditional branching instructions examine the status of one of four condition flags to determine
whether the specified branch is to be executed. The conditions that may be specified are as
follows:

NZ Not Zero (Z=0)
Z Zero (Z=1)

NC No Carry (C=0)
C Carry (C=1)

PO Parity Odd (P =0)
PE Parity Even (P=1)
P Plus (S=0)

M Minus (S=1)

Thus, the conditional branching instructions are specified as follows:

Jumps Calls Returns

IC CcC RC (Carry)

JINC CNC RNC (No Carry)
1Z CZ RZ (Zero)

INZ CNZ RNZ (Not Zero)
JP CP RP (Plus)

M CM RM (Minus)

JPE CPE RPE (Parity Even)
JPO CPO RPO (Parity Odd)

Two other instructions can affect a branch by replacing the contents or the program counter:

PCHL Move H & L to Program Counter
RST Special Restart Instruction Used with Interrupts

Stack, I/O and Machine Control Instructions:
The following instructions affect the Stack and/or Stack Pointer:

PUSH Push Two bytes of Data onto the Stack
POP Pop Two Bytes of Data off the Stack
XTHL Exchange Top of Stack with H & L
SPHL Move content of H & L to Stack Pointer

Prof. (Dr.) Saibal Pradhan, CEMK Page - 16

Intel 8085 Microprocessor

The 1I/0 instructions are as follows:

IN Initiate Input Operation
OUT Initiate Output Operation

The Machine Control instructions are as follows:
EI Enable Interrupt System

DI Disable Interrupt System

HLT Halt

NOP No Operation

8085A Instruction Set:

SL. | Mnemonic Op-code Bytes | Clock | Function Z]C |F Lag| S|P
Immediate data transfer instructions:

1 MVI B, d8 06-d8 2 7 B=d8 === -]-
2 MVI C, d8 0E-d8 2 7 C=d8 === -]-
3 MVI D, d8 16-d8 2 7 D=d8 - - -]
4 MVIE, d8 1E-d8 2 7 E=d8 - - -]
5 MVI H, d8 26-d8 2 7 H=d8 - - 0--]-
6 MVIL, d8 2E-d8 2 7 L=d8 - - 0--]-
7 MVI M, d8 36-d8 2 10 M=d8 - - - -] -
8 MVI A, d8 3E-d8 2 7 A=d8 - - -]
9 LXIB, d16 01-11-hh 3 10 BC =dl16 - - 0--]-
10 LXID,dl6 11-11-hh 3 10 DE =d16 - - - -]-
11 LXIH, d16 21-11-hh 3 10 HL =d16 - - --]-
12 LXISP,d16 | 31-1l-hh 3 10 SP =d16 - - - -]-
Direct Data Transfer

13 LDA al6 3A-1l-hh 3 13 A =al6] - - -]
14 STA al6 32-11-hh 3 13 [al6]=A - - - -] -
15 LHLD al6 2A-11-hh 3 16 HL =[al6] === -]-
16 SHLD al6 22-11-hh 3 16 [al6] = HL - - - -]-
Indirect Data Transfer Instructions

17 LDAX B 0A 1 7 A =[BC] - -]
18 LDAX D 1A 1 7 A =[DE] - -]
19 STAX B 02 1 7 [BC1=A I R
20 STAX D 12 1 7 [DE]=A - - -]
Register Data Transfer Instructions

21 MOV B, B 40 1 4 B=B - oo
22 MOV B, C 41 1 4 B=C I R
23 MOV B, D 42 1 4 B=D .
24 MOV B, E 43 1 4 B=E - - -]
25 MOV B, H 44 1 4 B=H - - -]
26 MOV B, L 45 1 4 B=L - -]
27 MOV B,M 46 1 7 B=M - -]

Prof. (Dr.) Saibal Pradhan, CEMK Page - 17

Intel 8085 Microprocessor

SL. | Mnemonic Op-code Bytes | Clock | Function

28 MOV B, A 47

AN

29 MOV C, B 48

30 MOV C, C 49

31 MOV C,D 4A

32 MOV C, E 4B

33 MOV C, H 4C

34 MOVC, L 4D

35 MOV C,M 4E

36 MOV C, A 4F

37 MOV D, B 50

38 MOV D, C 51

39 MOV D, D 52

40 MOVD, E 53

41 MOV D, H 54

42 MOV D, L 55

43 MOV D, M 56

44 MOV D, A 57

45 MOVE, B 58

46 MOVE, C 59

47 MOV E, D 5A

48 MOVE, E 5B

49 MOVE,H 5C

50 MOVE, L 5D

51 MOV E,M 5E

52 MOVE, A 5F

53 MOV H, B 60

54 MOVH, C 61

55 MOV H, D 62

56 MOV H, E 63

57 MOV H, H 64

58 MOVH, L 65

59 MOV H,M 66

60 MOV H, A 67

61 MOVL,B 68

62 MOVL,C 69

63 MOVL,D 6A

64 MOV L, E 6B

65 MOV L,H 6C

66 MOVL, L 6D

67 MOV L, M 6E

I
> IZICEEm O QW Iz icT|mg|a|wE| > |5 E oW zicmagw > |20 T m| oW | >

68 MOVL, A 6F

69 MOV M, B 70

70 MOV M, C 71

71 MOV M, D 72

72 MOV M, E 73

73 MOV M, H 74

ZIZIZIZIZ|IZR|C O T C|C|T I O D | B | | = T T | | | | o (T OO (O[O O O O O Qa0 0000w
Il

Il
i lesliesliwi{@]}e)

RN N B N B N B N [e N N N NI R R R R RN I E N R R R I B R R I R B R R R N R RN RN BN B B RN E S

74 MOV M, L 75

Prof. (Dr.) Saibal Pradhan, CEMK

Intel 8085 Microprocessor

SL. | Mnemonic Op-code Bytes | Clock | Function Z1C FLa STp
- MOVM,M |- -

75 MOV M, A 77 1 7 M=A - - -] -

76 MOV A, B 78 1 4 A=B - - -] -

77 MOV A, C 79 1 4 A=C - - -] -

78 MOV A, D 7A 1 4 A=D R D

79 MOV A,E 7B 1 4 A=E A R

80 MOV A, H 7C 1 4 A=H - - -]

81 MOV A, L 7D 1 4 A=L - - -]

82 MOV A, M 7E 1 7 A=M - - -]

83 MOV A, A 7F 1 4 A=A A

Stack Data Transfer Instructions

84 POP B Cl 1 10 C=][SP], B=[SP+1] - - -]

85 POP D Dl 1 10 E =[SP], D = [SP+1] - - -]

86 POP H El 1 10 L =[SP], H =[SP+1] S

87 POP PSW Fl1 1 10 A =[SP], F = [SP+1] el Bl
88 PUSH B G5 1 10 [SP-1]1=B, [SP-2]=C - - l-- -

89 PUSHD D5 1 10 [SP-1]=D, [SP-2]=E - - l-- -

90 PUSHH E5 1 10 [SP-1]=H, [SP-2]=L - - 1-1-]-

91 PUSHPSW | F5 1 10 [SP-1]=F, [SP-2]=A - - 1-1-]-

92 XTHL E3 1 16 HL < stack data - - -1-1-

Miscellaneous Data Transfer Instructions

93 IN p8 DB-p8 2 10 | Inputs data to A - -]- - |-

94 OUT p8 D3-p8 2 10 Outputs data from A - - 1-1-]-

95 SPHL F9 1 6 SP =HL - - -- -

96 XCHG EB 1 4 HL < DE S

Arithmetic and Logic Instructions

8-bit Binary Addition

97 ADI d8 C6-d8 2 7 A=A+d8 Sl i Ml Mol
98 ADD B 80 1 4 A=A+B * |k | k| x| *
99 ADD C 81 1 4 A=A+C ol Il ol ol e
100 | ADD D 82 1 4 A=A+D ol Bl ol ol e
101 | ADDE 83 1 4 A=A+E * |k |k | % | *
102 | ADDH 84 1 4 A=A+H I O
103 | ADDL 85 1 4 A=A+L ol Bl ol ol e
104 | ADDM 86 1 7 A=A+M ol Bl ol ol e
105 | ADD A 87 1 4 A=A+A L ol O
Addition with Carry

106 | ACI d8 CE-d8 2 7 A=A+d8+CY ol Ml el ol e
107 | ADCB 88 1 4 A=A+B+CY ol Ml el ol e
108 | ADCC 89 1 4 A=A+C+CY ol Bl ol ol e
109 | ADCD 8A 1 4 A=A+D+CY ol Bl ol ol e
110 | ADCE 8B 1 4 A=A+E+CY ol el Bl
111 | ADCH 8C 1 4 A=A+H+CY ol el Bl
112 | ADCL 8D 1 4 A=A+L+CY ol Bl ol ol e
113 | ADCM 8E 1 7 A=A+M+CY ol Bl ol ol e
114 | ADCA 8F 1 4 A=A+A+CY ol el B

16-bit Addition

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 19

Intel 8085 Microprocessor

SL Mnemonic Op-code Bytes | Clock | Function AR FLa STp
115 | DADB 09 1 10 HL = HL + BC - F - -] -
116 | DADD 19 1 10 HL =HL + DE - * - - |-
117 | DADH 29 1 10 HL =HL + HL - * - - |-
118 | DAD SP 39 1 10 HL =HL + SP - F - -] -
BCD Addition

Decimal adjust
119 | DAA 27 1 4 accumulator after BCD Ol IR IO O

addition
Increment
120 | INRB 04 1 4 B=B+1 S ol el e
121 | INRC 0C 1 4 C=C+1 S ol el e
122 | INRD 14 1 4 D=D+1 oo k| R ¥
123 | INRE 1C 1 4 E=E+1 ®opoo| k| k| Ok
124 | INR H 24 1 4 H=H+1 S ol el e
125 | INRL 2C 1 4 L=L+1 S ol el
126 | INRM 34 1 10 M=M+1 ®opoo| k| k| ok
127 | INR A 3C 1 4 A=A+1 ®opoo| k| k| ok
128 | INXB 03 1 6 BC=BC+1 - - - - -
129 | INX D 13 1 6 DE=DE+1 - - - - -
130 | INX H 23 1 6 HL =HL +1 - - -1-1-
131 | INX SP 33 1 6 SP=SP+1 - - -1-1-
Subtraction
8-bit Subtraction
132 | SUI d8 D6-d8 1 7 A=A-d8 S ol el e
133 | SUBB 90 1 4 A=A-B S ol el e
134 | SUBC 91 1 4 A=A-C I Il ol ol
135 | SUBD 92 1 4 A=A-D ®opoR |k ok |k
136 | SUBE 93 1 4 A=A-E Sl ol el
137 | SUBH 94 1 4 A=A-H S ol el
138 | SUBL 95 1 4 A=A-L S R ol O
139 | SUBM 96 1 7 A=A-M ®opoR |k k| ok
140 | SUB A 97 1 4 A=A-A 110|100 |1
Subtract with Borrow
141 | SBId8 DE-d8 2 7 A=A-d8-CY S ol el e
142 | SBBB 98 1 4 A =A-B-CY S ol el e
143 | SBBC 99 1 4 A=A-C-CY I I ol ol
144 | SBBD 9A 1 4 A=A-D-CY I I ol ol
145 | SBBE 9B 1 4 A=A-E-CY S ol el e
146 | SBBH 9C 1 4 A=A-H-CY S ol el e
147 | SBBL 9D 1 4 A=A-L-CY I Il ol ol
148 | SBBM 9E 1 7 A=A-M-CY I Il ol ol
149 | SBB A 9F 1 4 A=A-A-CY ®opoR |k |k |k
Decrement
150 | DCR B 05 1 4 B=B-1 S ol el
151 | DCRC 0D 1 4 C=C-1 S ol el
152 | DCRD 15 1 4 D=D-1 SRR ol ol
153 | DCRE 1D 1 4 E=E-1 ®opoo| k| k| Ok

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 20

Intel 8085 Microprocessor

SL. | Mnemonic Op-code Bytes | Clock | Function AR FLa STp
154 | DCRH 25 1 4 H=H-1 ol I el
155 | DCRL 2D 1 4 L=L-1 S I el el
156 | DCR M 35 1 10 M=M-1 - FFx
157 | DCR A 3D 1 4 A=A-1 I el el
158 | DCX B 0B 1 6 BC=BC-1 - - 1-1-]-
159 | DCXD 1B 1 6 DE=DE-1 - - 1-1-1-
160 | DCXH 2B 1 6 HL=HL -1 - - 1-1-1-
161 | DCX SP 33 1 6 SP=SP-1 - |-]-
Compares

162 | CPId8 FE-d§ 2 7 Flags = A —d8§ ol el el
163 | CMPB B8 1 4 Flags=A-B ol el el
164 | CMPC B9 1 4 Flags=A-C ol el el
165 | CMPD BA 1 4 Flags=A-D ol el
166 | CMPE BB 1 4 Flags=A-E ol el Bl e
167 | CMPH BC 1 4 Flags=A-H ol R el
168§ | CMPL BD 1 4 Flags=A-L ol el el
169 | CMPM BE 1 7 Flags=A-M ol el el
170 | CMP A BF 1 4 Flags=A-A 110|001
Logic Instructions

Inversion

171 | CMA | 2F | 1 4 |A=A - -]-]
The AND Operation

172 | ANI dS8 E6-d8 2 7 A=A*d8 *10 |0 *|*
173 | ANAB A0 1 4 A=A*B Lo | * x| *
174 | ANAC Al 1 4 A=A*C Lo [*|*
175 | ANAD A2 1 4 A=A*D 1O [* | *|*
176 | ANAE A3 1 4 A=A*E 1O [* | *|*
177 | ANAH A4 1 4 A=A*H ol O el
178 | ANAL A5 1 4 A=A*L ol O el
179 | ANAM Ab 1 7 A=A*M Lo [*|*]
180 | ANA A A7 1 4 A=A*A Lo [**]
The OR Operation

181 | ORI d8 F6-d8 2 7 A=AVYd8 *10 |0 *|*
182 | ORA B B0 1 4 A=AVYB *10 |0 [*|*
183 | ORAC Bl 1 4 A=AYC *10 |0 [*|*
184 | ORAD B2 1 4 A=AYD *10 |0 *|*
185 | ORAE B3 1 4 A=AVYE *10 |0 *|*
186 | ORAH B4 1 4 A=AYH *10 |0 [*|*
187 | ORAL B5 1 4 A=AVYL *10 |0 [*|*
188 | ORAM B6 1 7 A=AYM *10 |0 [*|*
189 | ORA A B7 1 4 A=AVYA *10 |0 [*|*
The Exclusive-OR Operation

190 | XRId8 EE-d8 2 7 A=A XOR d8 *10 |0 *|*
191 | XRAB A8 1 4 A=AXORB *10 |0 *|*
192 | XRAC A9 1 4 A=AXORC *10 |0 *|*
193 | XRAD AA 1 4 A=AXORD *10 |0 *|*
194 | XRAE AB 1 4 A=AXORE *10 |0 *|*

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 21

Intel 8085 Microprocessor

SL. | Mnemonic Op-code Bytes | Clock | Function AR FLag STp
195 | XRAH AC 1 4 A=AXORH *10 |0 [*|*
196 | XRAL AD 1 4 A=AXORL *10 |0 |* | *
197 | XRAM AE 1 7 A=AXORM *10 |0 *|*
198 | XRA A AF 1 4 A=AXORA 1]1]0]0]0]1
Rotate Instructions
199 | RLC 07 1 4 Rotate A left -1 *F - -]
200 | RRC OF 1 4 Rotate A right - - - -
201 | RAL 17 1 4 Rotate A left thru Cary - -0 -
202 | RAR 1F 1 4 Rotate A right thru Carry -1 * -]
Program Control Instructions
Unconditional Jump Instructions
203 | JMP al6 C3-11-hh 3 10 Program continues at al6 - - 1-1-1-
204 | PCHL E9 1 6 Program continues at == -]
address HL
Conditional Jump Instructions
205 | JZ al6 CA-ll-hh 3 7/10 | Jump if zero - - 1-1-1-
206 | INZ al6 C2-11-hh 3 7/10 | Jump if not zero - - 1-1-1-
207 | JCalé6 DA-1l-hh 3 7/10 | Jump if carry set - l- - 1-1-
208 | INCalé6 D2-11-hh 3 7/10 | Jump if carry cleared - l- - 1-1-
209 | IM al6 FA-1l-hh 3 7/10 | Jump if minus - - 1-1-1-
210 | JPal6 F2-11-hh 3 7/10 | Jump if positive - - 1-1-1-
211 | JPE al6 EA-1l-hh 3 7/10 | Jump if parity even - l- - 1-1-
212 | JPO al6 E2-11-hh 3 7/10 | Jump if parity odd - l-1-1-1-
Linking to a Subroutine
213 | CALL al6 CE-II-hh 3 18 Call subroutine at al6 - |- 0-1-1-
214 | CCalé6 DC-1l-hh 3 9/18 | Call subroutine on carry - l-1-1-1-
215 | CNCal6 DA4-11-hh 3 9/18 | Call subroutineonnocarry |- |- |- |- |-
216 | CZal6 CC-ll-hh 3 9/18 | Call subroutine on zero - -l -1-
217 | CNZ al6 C4-11-hh 3 9/18 | Call subroutineonnotzero |- |- |- |- |-
218 | CM al6 FC-ll-hh 3 9/18 | Call subroutine on minus - - 1-1-1-
219 | CPalé6 F4-11-hh 3 9/18 | Call subroutine on positive |- |- |- |- |-
220 | CPE al6 EC-lI-hh 3 9/18 | Call sub on parity even - l- - 1-1-
221 | CPOal6 E4-11-hh 3 9/18 | Call sub on parity odd - - 1-1-1-
Returning from a subroutine
222 | RET C9 1 10 Return from subroutine - - 1-1-1-
223 | RC DS 1 6/12 | Return if carry set - - 1-1-1-
224 | RNC DO 1 6/12 | Return if carry cleared - - 1-1-1-
225 | RZ C8 1 6/12 | Return if zero - - - - -
226 | RNZ CO0 1 6/12 | Return if not zero - - - - -
227 | RM F8 1 6/12 | Return if minus - |- -1-1-
228 | RP FO 1 6/12 | Return if positive - - 1-1-1-
229 | RPE E8 1 6/12 | Return if parity even - - 1-1-1-
230 | RPO EO 1 6/12 | Return if parity odd - - 1-1-1-
Restart Instructions
231 | RSTO C7 1 12 Call subroutine at 0000H - - 1-1-1-
232 | RST1 CF 1 12 Call subroutine at 0008H - - 1-1-1-
233 | RST2 D7 1 12 Call subroutine at 0010H - - 1-1-1-
Prof. (Dr.) Saibal Pradhan, CEMK Page - 22

Intel 8085 Microprocessor

. . Flag
SL. | Mnemonic Op-code Bytes | Clock | Function ClAlS P
234 | RST3 DF 1 12 Call subroutine at 0018H - - 1-1-
235 | RST4 E7 1 12 Call subroutine at 0020H - |- 1-1-
236 | RSTS EF 1 12 Call subroutine at 0028H - |- 1-1-
237 | RST6 F7 1 12 Call subroutine at 0030H - |- 1-1-
238 | RST7 FF 1 12 Call subroutine at 0038H - |- 1-1-
Miscellaneous Instructions
Microprocessor Control Instructions
239 | NOP 00 1 4 Performs no operation - - l-1-
240 | STC 37 1 4 Set carry flag 1 |- |-]-
241 | CMC 3F 1 4 Complement carry flag * - l- |-
242 | HLT 76 1 4 Halt until reset or interrupt - |- 1-1-
243 | El FB 1 4 Enable interrupts - |-1-1-
244 | DI F3 1 4 Disable interrupts - l-1-1-
245 | RIM 20 1 4 Read interrupt mask - |- 1-1-
246 | SIM 30 1 4 Set interrupt mask - l-1-1-
Note: -, no change; *, changes;
Prof. (Dr.) Saibal Pradhan, CEMK Page - 23

Intel 8085 Microprocessor

Sample Questions and Solutions:

1.

2.

3.

10.

11.

12.
13.
14.
15.

16.
17.

Write a sequence of immediate instructions that will place a 0000 in BC and a 12H in
Accumulator?

Write a sequence of immediate instructions that will store 16H in memory location 1200H and a
17H in memory location 1202H?

Explain how does the LDA 1000H instruction function?

Explain what answer is found in memory locations 1200H and 1201H after the execution of the
following instructions

MVI H, 22H
MVI L, 44H
SHLD 1200H

Explain what answer is found in memory locations 1200H in the following sequence of
instructions.

MVI B, 12H
MVI C, 00H
MVI A, 77TH
STAX B

Write a sequence of instructions that will use register indirect addressing to transfer the number
stored in memory location 1300H into memory location 1301H.

Explain what does the MOV M, C instruction do if HL=1234H and C=34H.

Write a sequence of instructions that use MOV instructions to swap the contents of the BC to DE
register pairs.

Write a sequence of instructions that will store a zero in memory location 1000H through
10003H.

If a 1000H is pushed into the stack followed by a 2000H, which number is the first to come off
the stack?

What number appears in BC register pair after the following sequence of instructions.

LXI H, 3000H
LXI D, 2500H
PUSH H
PUSH D

POP H

POP B

If a PUSH PSW is immediately followed by a POP B, in which register do the flag data appear?
Write a sequence of instructions that will add a 56H to the number in the B register.

Write a sequence of instructions that will add the content of H to that of L register.

Write a sequence of instructions that will add the content of HL to that of DE register pair (not
using DAD D)

Write a sequence of instructions that will add the BCD numbers placed in B and L registers.
Write e sequence of instructions that will one’s complement the contents of DE register pair.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 24

Intel 8085 Microprocessor

Solutions:
1. Write a sequence of immediate instructions that will place a 0000 in BC and a 12H in
Accumulator?
LXI B, 0OOOOH MVI B, OOH
or MVIC, OOH
MVI A, 12H MVI A, 12H

2. Write a sequence of immediate instructions that will store 16H in memory location 1200H and a
17H in memory location 1202H?

LXI H, 1200H
MVI M, 16H
INXH
INXH
MVIM, 17H

3. Explain how does the LDA 1000H instruction function?

After the execution of the instruction, the content of memory having address 1000H is
loaded into accumulator.

4. Explain what answer is found in memory locations 1200H and 1201H after the execution of the
following instructions
MVIH, 22H
MVIL, 44H
SHLD 1200H

After the execution of the first two instructions, the content of HL register pair will be
2214H. SHLD instruction is a direct mode of instruction after execution of which the
content of L and H registers will be stored in memory location1200H and 1201H
respectively.

5. Explain what answer is found in memory locations 1200H in the following sequence of
instructions.
MVI B, 12H
MVI C, 00H
MVI A, 77TH
STAX B

After the execution of first two instructions, BC register pair will initialized with 1200H.
The third instruction stores 77H in accumulator. The final instruction is a register indirect
mode of instruction which stores the content of accumulator in memory location pointed
out by BC register pair. Therefore, the accumulator value (77H) will be stored in memory
location 1200H.

6. Write a sequence of instructions that will use register indirect addressing to transfer the number
stored in memory location 1300H into memory location 1301H.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 25

Intel 8085 Microprocessor

LXI B, 1300H
LDAX B

INX B
STAXB

7. Explain what does the MOV M, C instruction do if HL=1234H and C=34H.

The instruction MOV M, C stores the content of register C in memory location pointed
out by HL register pair. In the present case, C=34H and HL=1234H, thus the data 34H will
be stored in memory location 1234H.

8. Write a sequence of instructions that use MOV instructions to swap the contents of the BC to DE
register pairs.

MOV H, B ; content of BC is temporarily stored in HL
MoV L, C

MOV B, D ; content of DE is stored in BC
MOV, E

MOV D, H ; finally the content of BC kept aside in HL is stored in DE
MOVE, L

9. Write a sequence of instructions that will store a zero in memory location 1000H through
10003H.

LXI'H, 1000H ; HL =1000H
MOV A, L

MOV M, A

INXH ; HL=1001H
MOV M, A

INXH ; HL =1002H
MOV M, A

INXH

MOV M, A ; HL = 1003H
HLT

This is an example of iteration i.e. repetitive work. The above piece of program stores
values in four memory locations by using four separate instructions which is not efficient
in case of large number of iteration. Large iterations are implemented by repeating a
group of instructions in a number of times called looping and is demonstrated below
with the same example. A counter is used to control looping:

LXI H, 1000H ; memory pointer

MVIC, 04H ; four memory locations to be loaded
LOOP: MOV M, A ; data stored in memory
INXH ; pointer updated for next memory

Prof. (Dr.) Saibal Pradhan, CEMK Page - 26

Intel 8085 Microprocessor

DCR C ; counter decremented
JNZ LOOP ; the process is repeated until counter is zero
HLT

10. If a 1000H is pushed into the stack followed by a 2000H, which number is the first to come off
the stack?

In the present case, 1000H is PUSHed first and then 2000H. As stack is a LIFO memory,
the last data PUSHed (2000H) in stack will be retrieved first.

11. What number appears in BC register pair after the following sequence of instructions.

LXI H, 3000H
LXI D, 2500H
PUSH H
PUSH D

POP H

POP B

Content of HL is pushed in stack first and then the content of DE. Poping of HL is done
first and then BC. Therefore, POP H stores the value of DE (as pushed last) in HL (2500H)
while POP B retrieves the original value of HL in BC which is 3000H.

12. If a PUSH PSW is immediately followed by a POP B, in which register do the flag data appear?

PSW, the program status word, is the combination of Accumulator (msb) and flag
register (Isb). Thus execution of POP B immediately after PUSH PSW will retrieve the
value of Accumulator plus flag register in BC register pair. The value of accumulator will
appear in B and that of flag register in C.

13. Write a sequence of instructions that will add a 56H to the number in the B register.

MVI A, 56H
ADD B

14. Write a sequence of instructions that will add the content of H to that of L register.

MOV A, H
ADD L

15. Write a sequence of instructions that will add the content of HL to that of DE register pair (not
using DAD D)

MOV A, E

ADD L

MOVL, A ; low byte of result is placed in L

MOV A, D

ADCH

MOV H, A ; high byte result is placed in H and carry, if any, is available in CY flag

Prof. (Dr.) Saibal Pradhan, CEMK Page - 27

Intel 8085 Microprocessor

16. Write a sequence of instructions that will add the BCD numbers placed in B and L registers.

MOV A, B
ADD L
DAA ; result is in Accumulator and carry, if any, is available in CY flag.

17. Write a sequence of instructions that will do one’s complement to the contents of DE register
pair.

MOVA, E
CMA
MOVE, A
MOV A, D
CMA
MOV D, A

Prof. (Dr.) Saibal Pradhan, CEMK Page - 28

Intel 8085 Microprocessor

Assembly Language Programming

Lecture-10
Assembly Language Programming:

-

EEEEREE FE

£Y
Y

EE

The sequence of commands used to tell a microprocessor what to do is called a program. The commands are
called instructions.

Some part of it is called Monitor Program or Operating System and the other is called User Program or
Application Program

Operating Program basically organizes the inputs and the outputs with the system

User Program supplies the variables and their formats

Microprocessor can only understand the instructions coded in binary called machine language.

Machine language is difficult, if not impossible, for human to handle.

Assembly language was developed to provide mnemonics plus other features to make the programming easy,
faster and less prone to error.

Instructions abbreviated in English letters to represent the operation to be performed by the microprocessor are
called mnemonics.

Assembly language programs must be translated into machine code by a program called assembler.

Assembly language is referred to as a low-level language because it deals directly with the internal structure of
the microprocessor.

High level language like C, BASIC, Java etc. can also be used for programming.

High level language is converted into machine code by a program called compiler.

Structure of Assembly Language:

-

,,,,,

,,,,,

E

@

An assembly language program consists of a number of assembly language instructions used to tell the CPU
what to do.

It also contains instructions giving direction to the assembler called directives.

For example, MOV, ADA instructions are commands to the CPU whereas ORG, END are directives to the
assembler. ORG followed by an address tells the assembler to place the op-code at that memory location while
END indicates the end of the source code.

An assembly language instruction consists of five fields:

[label:] mnemonic [destination operand] [source operand] [;comment]

Brackets indicate that a field is optional and not all lines have them. Brackets should not be typed in.

The label field allows the program to refer to a line of code by name. There are rules for writing the label like
type & maximum number of characters, starting characters etc. which is assembler specific.

The assembly language mnemonic together with the operands forms the command for the CPU. For example
MOV A, B. MOV is the mnemonic, which is the abbreviation of data movement. The operands are supplied by
A and B registers. The data from source register B moves to destination register A.

The comment field begins with a semicolon. Comments may be at the end of a line or on a line itself. The
assembler ignores comments, but they should be present to make the program understandable to others and at a
later time.

Assembling and running of an 8085A program:

A machine can only understand machine language. So assembly language program is to be translated back into
machine language. Human for convenience uses assembly language.

Assembly language program is time consuming and difficult, if not impossible, to translate into machine
language manually.

A PC based program called an assembler can do the same instantaneously. It takes an assembly language
program as input, and produces an object file having extension .obj for machine codes.

The assembly language file can be written in any EDITOR program like DOS EDIT, WINDOWS NOTEPAD
etc. which saves the file in ASCII format having extension .asm.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 29

Intel 8085 Microprocessor

W Program can also be written in high level languages like ‘C’, BASIC, PASCAL. An interpreter program or a
compiler is used to translate the same into machine codes.
i All the object files created by assembler or compiler can then be combined together to form a single machine
language program by another program called linker.
i The total flow diagram of machine language program development is depicted below.
i An Assembler produces a listing file having extension .Ist containing the original assembly language
instructions and the corresponding binary codes. It also reports for any error encountered during conversion.
EDITOR
PROGRAM
test.asm
ASSEMBLER
PROGRAM

test.Ist J

test.obj l/ Other obj files

LINKER
PROGRAM

ltest.hex

Load into:

Simulator for
debugging

UP Trainer KIT for
checking

EPROM to run the
System.

Steps to create a program

W Programs can be developed faster in high level language than assembly language as the high-level language
uses higher building blocks. However a program written in high level language usually occupies more space in
memory and takes more time to execute than that developed by assembly language.

i Programs that involve a lot of hardware-control are normally written in assembly language.

Program Development Steps:

Defining the problem

The first step in writing a program is to write down the operations to be done by the program and the order of
executing them. An example of a simple problem may be

1. Read temperature from thermocouple sensor

2. Read ambient temperature from an ambient sensor

3. Add correction for ambient temperature

4. Save result in memory

Prof. (Dr.) Saibal Pradhan, CEMK Page - 30

Intel 8085 Microprocessor

For a program as simple as this the four actions desired are very close to the assembly statements. However, for
more complex problem we need to develop more extensive outline of the problem so that the actions can be replaced
by assembly language statements.

Representing Program Operations

The formula or sequence of operations used to solve a problem is called algorithm. An algorithm can be written
using graphic shapes called flowcharts. Algorithm can also be written by pseudocodes using standard program
structures.

FLOWCHARTS

Different graphic shapes are used to represent different types of operations. The figure below shows some of the
commonly used graphic shapes:

PROCESS INPUT/
OUTPUT

CONNECTOR OFF-PAGE CONNECTOR

SUB
ROUTINE CTERMINATION) Q G

Figure: Flowchart symbols

Prof. (Dr.) Saibal Pradhan, CEMK Page - 31

Intel 8085 Microprocessor

Figure below shows a flowchart for a program to read 24 data samples from a thermocouple sensor at an interval of

1 hour.
(START)

L

v

READ VALUE
FROM SENSOR

A

READ VALUE
FROM AMB.
SENSOR

A

ADD THE
TWO

A

STORE THE
RESULT IN
MEMORY

WAIT 1
HOUR

NO

YES

Prof. (Dr.) Saibal Pradhan, CEMK Page - 32

Intel 8085 Microprocessor

PSEUDOCODES

& Flowchart symbols are space consuming and are normally not used for large programs. Instead English like
statements called pseudo codes are used to represent the algorithm of the program.

Three basic operations viz. Sequence, Decision, and Iteration can represent the operations of any desired
problem.

i Sequence represents a series of actions

& Decision means choosing between two alternative actions

i Repetition means repeating a series of actions for a number of time

i Three to seven standard structures can represent all the operations in a typical program

-

These standard structures are:

SIMPLE SEQUENCE

IF-THEN-ELSE

IF-THEN

CASE expressed as nested IF-THEN-ELSE
CASE

WHILE-DO LOOP

REPEAT UNTIL

NowAwh =

Example of different cooking in different days of the week in the students’ Hostel using Flow Chart and Pseudo
Codes:

Pseudo Codes

IF MONDAY THEN
MAKE MUTTON MEAL
ELSE IF TUESDAY THEN
MAKE VEG MEAL
ELSE IF WEDNESDAY THEN
MAKE CHICKEN MEAL

ELSE IF SUNDAY THEN
MAKE SPECIAL MEAL

Prof. (Dr.) Saibal Pradhan, CEMK Page - 33

Intel 8085 Microprocessor

Flow Chart:

MUTTON
MEAL

Y

CHICKEN
MEAL

SPECIAL
MEAL

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 34

Intel 8085 Microprocessor

Assembly Language Programming:
Flow Chart for transferring block of bytes from one area of memory to another

(START)

A 4
Initialize COUNT & POINTERS

P

A 4
Transfer a Byte

'

Adjust POINTERS

y
Decrement COUNT

;8085 Program to transfer a number of bytes from one place to another
;in memory (small string having 255 or less elements)

ORG 8000H

START: LXTI H, SOUR ; SOURCE MEMORY POINTER
LXTI D,DEST ; DESTINATION MEMORY POINTER
MVI B, COUNT ; STRING ELIMENT COUNTER

LOOP: MOV A, M ;MOVE SOURCE ELEMENT INTO ACC
STAX D ; STORE ACC IN DESTINATION
INX H ; SOURCE MEM POINTER INCREMENTED
INX D ; DESTINATION MEM POINTER INCREMENTED
DCR B
JNZ LOOP

ENDP: JMP ENDP

COUNT: EQU 100D

SOUR: EQU 9000H

DEST: EQU 9100H
END

Prof. (Dr.) Saibal Pradhan, CEMK Page - 35

Intel 8085 Microprocessor

;8085 Program to transfer a number of bytes from one place to another
;in memory (large string having 256 or greater no. of elements)

ORG 8000H
START: LXTI H, SOUR ; SOURCE MEMORY POINTER
LXTI D,DEST ; DESTINATION MEMORY POINTER
LXI B,COUNT ; STRING ELIMENT COUNTER
LOOP: MOV A, M ;MOVE SOURCE ELEMENT INTO ACC
STAX D ; STORE ACC IN DESTINATION
INX H ; SOURCE MEM POINTER INCREMENTED
INX D ; DESTINATION MEM POINTER INCREMENTED
DCX B ;CHECK IF BC=0, IF ZERO
STOP ;EXECUTION.
MOV A, B ; IF NOT ZERO, CONTINUE.
ORA C ;
JNZ LOOP ;
ENDP: JMP ENDP
COUNT: EQU 1000D
SOUR: EQU 9000H
DEST: EQU 9400H
END

Prof. (Dr.) Saibal Pradhan, CEMK Page - 36

Intel 8085 Microprocessor

Flow Chart of a sub routine that moves a block of words from one area of memory to

another
‘ MWORD ’

>
«
A

A
Transfer low-order byte

A
Adjust POINTERS

'

Transfer high-order byte

A 4
Adjust POINTERS

A
Decrement COUNT

YES

RETURN

;8085 Program to transfer a number of words from one place to another
;in memory (large string having 256 or greater no. of elements)

ORG 8000H
START: LXI SP,8500H ;SP INITIALIZED
LXTI H, SOUR ; SOURCE MEMORY POINTER
LXI D,DEST ; DESTINATION MEMORY POINTER
LXI B, COUNT ; STRING ELIMENT COUNTER

CALL MWORD

ENDP: JMP ENDP

ORG 8200H
MWORD: MOV A, M ;MOVE LOW-ORDER BYTE
STAX D ;
INX H
INX D

Prof. (Dr.) Saibal Pradhan, CEMK Page - 37

Intel 8085 Microprocessor

MOV A, M
STAX D
INX H

INX D
DCX B
MOV A,B
ORA C

JNZ MWORD
RET

COUNT: EQU 1000D

SOUR: EQU 9000H

DEST: EQU 9400H
END

Byte Block Exchanges:

Flow Chart for exchanging a
block bytes from one area of
memory with another

;MOVE HIGH-ORDER BYTE

’

; CONTINUE MOVING
; OTHERWISE STOP.

.
’

4

(START)

y

Initialize COUNT & POINTERS

IF NOT EXHUASTED

I
«
A

Exchange bytes

'

Adjust POINTERS

A 4

Decrement COUNT

Prof. (Dr.) Saibal Pradhan, CEMK

Intel 8085 Microprocessor

;8085 Program to exchange two string stored in memory
; (large string having 256 or greater no. of elements)

ORG 8000H
START: LXI H, SOUR ; SOURCE MEMORY POINTER
LXI D,DEST ;DESTINATION MEMORY POINTER
LXI B, COUNT ; STRING ELIMENT COUNTER
LOOP: MOV C,M ; SOURCE ELEMENT IN REG-C
LDAX D ;DESTINATION ELEMENT IN ACC
MOV M, A ;
MOV A, C ; EXCHANGE ELEMENTS
STAX D ;
INX H
INX D
DCX B ; CONTINUE MOVING IF NOT EXHUASTED
MOV A,B ; OTHERWISE STOP.
ORA C H
JNZ LOOP ;:
ENDP: JMP ENDP
COUNT: EQU 1000D
SOUR: EQU 9000H
DEST: EQU 9400H
END
Word Block Exchanges:

Like word transfer word exchanges are accomplished in a very similar manner. The only
difference between their flow charts is the exchange word instead of exchange byte.

14

;Equates for calling sequence EWORD

14

DEST: EQU 2800H
SOUR: EQU 0000H
COUNT: EQU 0200H
STACK: EQU 7FFFH

LXI D,DEST
LXI H, SOUR
LXI B,COUNT
LXI SP,STACK
CALL EWORD

ENDP: JMP ENDP

Prof. (Dr.) Saibal Pradhan, CEMK Page - 39

Intel 8085 Microprocessor

; Subroutine EWORD

ORG 3000H

EWORD : PUSH B ; SAVE COUNT
MOV C,M ;EXCHANGE LOW-ORDER BYTE
LDAX D
MOV M, A
MOV A, C
STAX D
INX D ; ADJUST POINTERS
INX H
MOV C,M ;EXCHANGE HIGH-ORDER BYTE
LDAX D
MOV M, A
MOV A, C
STAX D
INX D ; ADJUST POINTERS
INX H
POP B ; RESTORE COUNTER
DCX B ; DECREMENT COUNTER
MOV A,B ;TEST COUNTER
ORA C
JNZ EWORD ;IF COUNTER NOT ZERO
RET ; END SUBROUTINE

The subroutine EWORD contains two identical sequences of instructions, one to exchange low-
order bytes and one to exchange high-order bytes. This sequence can be written as a subroutine
improving the readability of the subroutine.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 40

Intel 8085 Microprocessor

XCHGB
Exchange low-
order byte

XCHGB
Exchange low-
order byte

'

Decrement COUNT

NO

Flow Chart of a subroutine that YES
exchanges a block words from one
area of memory with another RETURN

EWORD : CALL XCHGB
CALL XCHGB
DCX B
MOV A, B
ORA C

JNZ EWORD

RET

XCHGB: PUSH B
MOV C,M
LDAX D
MOV M, A
MOV A, C
STAX D
INX D
INX H
POP B
RET

Prof. (Dr.) Saibal Pradhan, CEMK Page - 41

Intel 8085 Microprocessor

8-bit Binary addition and subtraction:
Flow chart of a program that sums a no. of 8-bit data stored in memory

locations.
START

Initialize SUM,
COUNT & POINTER

>
«

Y

Sum Data

v

Adjust POINTER

v
Decrement COUNT

NO

YES

END

Assembly Language Programming:

; ADD 100 BYTES OF DATA STORED IN MEMORY AND
; LEAVES THE RESULT IN C & ACC

; 9:31 PM 8/19/2004 WRITTEN BY SAIBAL PRADHAN

ORG 8000H
DATAL: EQU 8500H ;DATA BYTES IN MEMORY STARTING AT 8500H
MADD: LXI H,DATAl ;MEMORY POINTER TO PICK UP DATA
MVI B, 100 ;BYTE COUNTER
XRA A ;CLEAR THE SUM & MSB SUM
MOV C,A ;
LOOP: ADD M ; SUM DATA
JNC SKIP
INR C ;ADD CARRY TO MSB SUM
SKIP: DCR B
JNZ LOOP ;REPEAT UNTILL 100 DATA ARE ADDED.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 42

Intel 8085 Microprocessor

ENDP:

Flow Chart:

JMP ENDP

END

Flow Chart of a program that subtracts bytes of an array from bytes of
another array and store the results in second array.

; SUBTARCT LIST2 DATA FROM LIST1 DATA AND STORE THE RESULT IN LIST2

LISTI:
LIST2:

ASUB:

LOOP:

START

Initialize COUNT
& POINTERS

v
Subtract Data

v

Adjust POINTERS

v
Decrement COUNT

NO

YES

END

10:33 PM 8/19/2004 WRITTEN BY SAIBAL PRADHAN

ORG

EQU
EQU

LXT
LXT
MVI

8000H

8500H
9000H

H,LIST2
D,LIST1
B, 100

LDAX D

SUB

M

MOV M, A

;ADDRESS OF LISTI1
;ADDRESS OF LISTZ2

;LIST2 POINTER
;LIST1 POINTER
; LOAD COUNTER

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 43

Intel 8085 Microprocessor

INX
INX
DCR
JINZ
ENDP: JMP

H
D
B
LOOP
ENDP

Flow Chart of a program that adds two 4-digit BCD numbers stored in memory.
Store the result also in memory.

START

Initialize
POINTERS

y

ACC

= LB of OP1

'

ADD LB of OP2
with ACC

A 4

Adjust ACC for
Decimal addition

v

Store the LB of

result

ORG
DATAL: EQU
DATAZ: EQU
RESULT: EQU
ADDBCD: LXT
LXT
LXT

A

Increment
POINTERS

A 4

ACC = HB of OP1

'

ADC HB of OP2
with ACC

y

Adjust ACC for
Decimal addition

'

Store the HB of
result

TWO 4-DIGIT BCD NUMBERS STORED IN MEMORY.
ALSO STORE THE RESULT IN MEMORY

8000H

8500H
8502H
8504H

H, DATA1
B, DATA2
D, RESULT

;OP1 IN
;OP2 IN
; RESULT

; MEMORY
; MEMORY
; MEMORY

:18 PM 8/19/2004 WRITTEN BY SAIBAL PRADHAN

MEMORY 8500-8501H
MEMORY 8502-8503H
IN MEM 8504-8506H

POINTER TO PICK UP OP1
POINTER TO PICK UP OP2
POINTER TO STORE RESULT

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 44

Intel 8085 Microprocessor

LDAX B
ADD M
DAA

STAX D

INX H
INX B
INX D

LDAX B
ADC M
DAA

STAX D

INX D

MVI A, O0O0H
ACI 00H
STAX D

PEND: JMP PEND

;LOAD 1ST BYTE OF OP2 IN ACC

;1ST TWO DIGITS OF OP1 & OP2 ARE ADDED
;ADJUST FOR BCD ADDTION

; STORE THE 1ST TWO DIGITS OF THE RESULT

; INCREMENT POINTERS TO ADD 2ND BYTES

r

;2RD & 4TH DIGITS OF OP1 & OP2 ARE ADDED
;AND ADJUSTED FOR BCD
; STORE THE 2ND BYTE OF THE RESULT

;5TH DIGIT OF THE RESULT IS PROCESSED
;AND STORED IN MEMORY.

Iz

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 45

Intel 8085 Microprocessor

Problems:

Develop flow charts and 8085 Assembly Language Programs (ALP) for

the following problems

1. Write an ALP to add two 16-bit numbers already stored in memory

locations 2000H and 2002H respectively. Justify the length of
the result and store it at memory starting at 2004H.

2. Write an ALP to subtract two 16-bit numbers already stored in
memory locations 2010H and 2012H respectively. Justify the
length of the result and store it in memory starting at 2014H.
Write an ALP to multiply two unsigned numbers.

Write an alp to multiply two signed numbers.

Repeat problems 3 and 4 for division.

A Dbyte 1s stored at memory location 2007H. Write an ALP to

separate the two nibbles and store ls-nibble and ms-nibble in

2008H and 2009H respectively.

Write an ALP to clear the memory ranging 2010H to 204FH.

8. Write an ALP to add the contents of memory locations starting at
2051H. The no. of data is given in memory location 2050H. Store
the result in BC register pair.

9. Write an ALP to add the first 10 prime numbers.

oY U Wb W

~J

Solutions:

1. Write an ALP to add two 16-bit numbers already stored in memory
locations 2000H and 2002H respectively. Justify the length of the
result and store it at memory starting at 2004H.

Addition of two 16-bit data (unsigned say) may result a 17-bit
answer which requires three memory locations for its storage.

8085 can add two 8-bit data by using ADD instruction. ADD requires
one of the operands to be kept in ACC and other may be in any 8-bit
register or it may be an immediate number also. 9-bit result will be
stored in ZF plus ACC. So whole addition will be in two steps, lower
two bytes of the operands will be added first and then the upper
bytes taking the carry of the first addition, if any. Carry of the
second addition will be the 17" bit of the result.

It can also add two 16-bit data using DAD instruction which requires
one operand to be stored in HL and the other in any of the four 16-
bit registers (HL, BC, DE and SP). 17-bit result will be available
in CF plus HL.

A. Using ADD instruction

LXI H, 2002H ;HL points 2°¢ operand

LXI B, 2004H ;BC points result

LDA 2000H ;ls-byte of 1°f operand is taken in ACC
ADD M ;1ls-byte of 2" operand is added with ACC
STAX B ;1ls-byte of the result is stored

Prof. (Dr.) Saibal Pradhan, CEMK Page - 46

Intel 8085 Microprocessor

INX H ;Pointers are incremented for next byte
INX B ;
LDA 2001H ;ms-byte of the 1°° operand is taken in ACC
ADC M ;ms—-bytes of the operands are

added ;considering the previous carry
STAX B ;2% byte of the result byte 1s stored
INX B
MVI A, 00H ;Carry of the 2™ addition is stored as 3™
ADC A ;byte of the result.
STAX B ;
HLT

B. Using DAD instruction

LHLD 2000H ;1°% operand is taken in HL

XCHG ;1°% operand is shifted in DE from HL

LHLD 2002H ;2" operand is taken in HL

DAD D ;They are added and HL stores the first 16

SHLD 2004H ;bit of the result which is stored in 2004H
;and 2005H

MVI A, 00H ;

ADC A ;17" bit of the result is taken in ACC and

STA 2006H ;finally stored in 2006H

HLT

Important!!

For 16-bit signed addition, final carry to be considered as sign
bit; accordingly the 3 byte to be made either FFH for CF=1 or
00H for CF=0.

2. Write an ALP to subtract two 16-bit numbers already stored in
memory locations 2010H and 2012H respectively. Justify the length
of the result and store it in memory starting at 2014H.

As 8085 can only subtract two 8-bit data, we have to do it 1in two
steps. The borrow (CF), 1f any, after first subtraction to be
considered during the second subtraction. The final borrow to be
considered as the sign bit and to be properly stored in the 3*9 byte.

LXI H, 2012H ; HL points 2" operand

LDA 2010H ; ls-byte of 1°% operand is in Acc

SUB M ; Acc <- ls-byte of opl - ls-byte of opZ2
STA 2014H ; RESULT STORED

INX H ; ms-bytes are subtracted and stored
LDA 2011H ;

SBB M ;

STA 2015H ;

Prof. (Dr.) Saibal Pradhan, CEMK Page - 47

Intel 8085 Microprocessor

MVI A, 00H ; If CF=0, 3" byte of the result is 00H
JNC SKIP ; and 1f CF=1, it is FFH

MVI A, FFH ;

SKIP: STA 2016H ;

HLT

3. Write an ALP to multiply two unsigned numbers.

We will write this program in a subroutine form as it may be used 1in
different parts of a main routine. Let us consider the numbers to be
multiplied are passed to the subroutine through registers B and C
and the subroutine will return the 16-bit result through BC register

pair.
.ORG 2000H
MAIN: LXI SP, 8000H ; STACK POINTER INITIALIZED
LDA 3000H ; ORIGINALLY OPERANDS WERE IN MEMORY AT
MOV B, A ; 3000H AND 3001H. THEY ARE PASSED
LDA 3001H ; THROUGH REG B AND REG C BEFORE THE
Mov Cc, A ; SUBROUTINE IS CALLED.
CALL MULS8
MULS8 : PUSH PSW
PUSH D
MVI A, 00H ; Check for zero operands. If one or both
ORA B ; operands are zero, result will be zero.
Jz ZERO ;
MvIi A, O0OH ;
ORA C ;
JNZ NEXT ;
ZERO: LXI B, 0000H ;
JMP STOP ;
NEXT: MvI A, O0OH
MOV D, A
AGAIN: ADD B
JNC SKIP
INR D
SKIP: DCR C
JNZ AGAIN
MOV C, A
MOV B, D
STOP: POP D

Prof. (Dr.) Saibal Pradhan, CEMK Page - 48

Intel 8085 Microprocessor

POP PSW
RET

4. Write an alp to multiply two signed numbers.

For signed multiplication, basically we have to multiply the
magnitudes of two numbers and the sign of the result will be
positive if operands are of same signs and negative 1f they are of
opposite signs.

As the range of 8-bit sign number system is -128 to +127, the range
of the result will be -128 x +127 (-16256D or CO080H)to -128 x -128
(+16384D or 4000H) which can be expressed in 2’s complement 16-bit

format.
.ORG 2000H
MAIN: LXI SP, 8000H ; STACK POINTER INITIALIZED
LDA 3000H ; ORIGINALLY OPERANDS WERE IN MEMORY AT
MOV B, A ; 3000H AND 3001H. THEY ARE PASSED
LDA 3001H ; THROUGH REG B AND REG C BEFORE THE
MoV C, A ; SUBROUTINE IS CALLED.
CALL SMULS
Mov A, C
STA 3002H
MOV A, B
STA 3003H

SMUL8: PUSH PSW
PUSH D

MvI D, O00H ; This block determines sign of the result
MOV A, B ; D=0 for result to be positive

XRA C ;

ANI 80H

JZ POS

Mvi D, O1H ; D=1 for result to be negative

POS : MOV A, B ; Checking the sign of reg B. If it 1is
ORI 00H ; negative it is replaced by its magnitude
JP BPOS
CMA
INR A
MOV B, A

BPOS : Mov A, C
ORI 00H
JP CPOS
CMA
INR A

Prof. (Dr.) Saibal Pradhan, CEMK Page - 49

Intel 8085 Microprocessor

Mov C, A

CPOS : CALL MULS
MOV A, B ; 1f result is zero, BC = BC
ORA C
JZ RESPOS

MOV A, D ; If result is positive BC = BC
ORI 00H
JZ RESPOS

; If result is negative, BC is replaced by its 2’s complement value

MOV A, B ;

CMA ;

MOV B, A ; 1’s complement of B

Mov A, C

CMA

INR A

Mov Cc, A ; 2’s complement of C

MVI A, 00H ; Carry, 1if any, be added with B’s
ADC B ; complement

MOV B, A

RSEPOS: POP D
POP PSW
RET

MULS : PUSH PSW
PUSH D

MOV A, B ; Check for zero operands. If one or both
ANA C ; operands are zero, result will be zero.
JNZ NEXT

ZERO: LXI B, 0000H ;
JMP STOP ;

NEXT: MvVI A, 00H ; Unsigned multiplication between two
MOV D, A ; non-zero 8-bit data by the method of
AGAIN: ADD B ; repeated addition. Carry generated, if
JNC SKIP ; any, 1s taken care of in the next byte
INR D
SKIP: DCR C
JNZ AGAIN
MOV C, A
MOV B, D

STOP: POP D

Prof. (Dr.) Saibal Pradhan, CEMK Page - 50

Intel 8085 Microprocessor

POP PSW
RET

5. Repeat problems 3 and 4 for division.
Try of your own to solve following the solutions of multiplications.
6. A byte 1is stored at memory location 2007H. Write an ALP to

separate the two nibbles and store ls-nibble and ms-nibble in
2008H and 2009H respectively.

.ORG 2000H

LDA 2007H ; data is taken in Acc

MOV B, A ; a copy 1s placed in Reg B

ANA OFH ; ms-nibble is masked to have the ls-nibble
STA 2008H ; ls-nibble is stored in 2008H

MOV A, B ; data is again taken in Acc

RRC ; Acc 1is rotated right 4 times to have
RRC ; ms-nibble in place of 1ls-nibble

RRC

RRC

ANA OFH ; ms-nibble is masked

STA 2009H ; original ms-nibble is stored in 2009H
HLT

7. Write an ALP to clear the memory ranging 2010H to 204FH.

In this problem 64 memory locations to be cleared starting from
2010H to 204FH.

.ORG 2000H
LXI H, 2010H
MVI C, 64H
XRA A

LOOP: Mov M, A
INX H
DCR C
JNZ LOOP
HLT

8. Write an ALP to add the contents of memory locations starting at
2051H. The no. of data is given in memory location 2050H. Store
the result in BC register pair.

.ORG 3000H

LXI H, 2050H

Mov C, M ; no of data to be added is taken in Reg C

XRA A ; Acc 1is cleared for addition

MOV B, A ; Reg B is also cleared to have carry
REPEAT: INX H

Prof. (Dr.) Saibal Pradhan, CEMK Page - 51

Intel 8085 Microprocessor

ADD M
JNC SKIP
INR B
SKIP: DCR C
JNZ PEPEAT
Mov Cc, A ; BC pair holds the result
HLT

9. Write an ALP to add the first 10 prime numbers.

The problem can be solved in two steps. The first routine will find
the first 10 prime numbers and stored them in memory and the second
routine will add them up and store the result.

The second routine 1is exactly similar to that of problem 8. Try to
write the first routine of your own.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 52

Intel 8085 Microprocessor

Problems:

Develop flow charts and 8085 Assembly Language Programs (ALP) for
the following problems

1. Write an ALP to add the odd numbers between 50 to 70.

2. Write an ALP to find the maximum in a given series of numbers
starting from 2051H. The length is given in 2050H.

3. Write an ALP to copy a block of 100 data bytes starting from
2050H at 2100H.

4. Write an ALP to shift a block of data between 2600H - 261FH to
the block starting at 2600H.

5. Write an ALP to find the no. of negative numbers in an array
stored in memory between 2060H and 207FH.

6. Write an ALP to find the no. of odd numbers in an array stored in
memory between 2060H and 207FH.

7. Write an ALP to find the square of a given number supplied
through Register B.

8. Write an ALP to find the sgquare root of a given number present in
Register B using loop-up table method.

9. Write an ALP to convert hexadecimal digits (0-F) supplied through
register B into 7-segment data using look-up table method.
Assume that the data 1lines (d0-d7) are connected with the
segments as: a,b,c,d,e, f,qg,dp : d0........... d’7 and the
7 _segment display is common anode type.

10. Repeat problem 15 considering common cathode display.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 53

Intel 8085 Microprocessor

Internal Block Diagram of 8085A

RST6.

INT INTI%{STS f RST7. i SI SO
Interrupt Control | Serial I/0 Control
i | 8-bit internal data
bus
AN
Accumulator- I'mp reg- nstruction Reg- _ _
2 | | | | FlgReg-5 | Q Breg-8 | Creg-8
ll Dreg-8 | E reg-8
Y
Hreg-8 | Lreg-8
ALU- Instruction -
8 Decoder Stack Pointer-16
— +5V Prog Counter-16
— GN Incr/Decr A L-16
D
|
)1(Timing and Control A4 {‘
X _p| CLKGEN CONTROL STATUS ~ DMA RESET | Adar Buffers | [Data/AddrBurs |
A TRLIIITL T e T
ALE S S 10M -
OUT Ready WR L Awrespy— OUT Ve I:Do7

D IN AlS

Prof. (Dr.) Saibal Pradhan, CEMK Page - 54

Intel 8085 Microprocessor

|

|

|

| --> X1
| s x2
: <-- RESET OUT
: <-- SO0D
: --> SID
: --> TRAP
: --> RST 7.5
: --> RST 6.5
: --> RST 5.5
: --> INTR
: <-- INTA
: <--> ADO
: <--> AD1
: <--> AD2
: <--> AD3
: <--> AD4
: <--> AD5
: <--> AD6
: <--> AD7
: (Gnd) Vss
|

|

|

8085A

Vce (+5V)
HOLD <--
HLDA -->

CLK (OUT) -->
RESET IN <--
READY <--
I10/M -->

S1 —-—>

RD -—>

WR —->

ALE -->

SO0 -->

Al5 -—>

Ald -—>

Al3 -->

Al2 -->

All --—>

Al1Q0 -->

A9 -—>

A8 -->

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 55

Intel 8085 Microprocessor

Prof. (Dr.) Saibal Pradhan, CEMK Page - 56

Intel 8085 Microprocessor

Timming Diagram (8085)

Timing Diagram is a graphical representation. It represents the execution time taken by each instruction in a
graphical format. The execution time is represented in T-states.

Instruction Cycle:
The time required to execute an instruction is called instruction cycle.

Machine Cycle:
The time required to access the memory or input/output devices is called machine cycle.

T-State:
i The machine cycle and instruction cycle takes multiple clock periods.
i A portion of an operation carried out in one system clock period is called as T-state.

MACHINE CYCLES OF 8085:

The 8085 microprocessor has 5 (seven) basic machine cycles. They are
1. Opcode fetch cycle (4T)

Memory read cycle (3 T)

Memory write cycle (3 T)

1/0 read cycle (3 T)

1/0 write cycle (3 T)

(21212

uhowbd

Note : Time period, T = 1/f ; where f = Internal clock frequency

nsmg edge fal!mgedge urnngatveedge

positive edse_/__,m

-{-——.—..—_}:
| T-state
i Each instruction of the 8085 processor consists of one to five machine cycles, i.e., when the 8085

rocessor executes an instruction, it will execute some of the machine cycles in a specific order.
i The processor takes a definite time to execute the machine cycles. The time taken by the processor

to execute a machine cycle is expressed in T-states.
i One T-state is equal to the time period of the internal clock signal of the processor.
i The T-state starts at the falling edge of a clock.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 57

Intel 8085 Microprocessor

Opcode fetch machine cycle of 8085 :

i Each instruction of the processor has one byte opcode.

W The opcodes are stored in memory. So, the processor executes the opcode fetch machine cycle to fetch
the opcode from memory.
Hence, every instruction starts with opcode fetch machine cycle.
The time taken by the processor to execute the opcode fetch cycle is 4T.
In this time, the first, 3 T-states are used for fetching the opcode from memory and the remaining T-
states are used for internal operations by the processor.

EEE

SIGNAL T, T, T, T,

CLOCK N/ N/ |
As-Ag :X HIGHER | ORDER MEMORY| ADDRESS UNSPECIFIED
AD,-AD, | X | >4 orconE| ®:00 Dpd

ALE |\ \}

IO/M.S, S, [X ~\ioM=0.] s, =15,=1

(21212
Memory Read Machine Cycle of 8085:
i The memory read machine cycle is executed by the processor to read a data byte from memory.
W The processor takes 3T states to execute this cycle.
W The instructions which have more than one byte word size will use the machine cycle after the opcode
fetch machine cycle.

SIGNAL 3 T, T,
ctox N N]

A, A, :)(HIGHER |ORDER MEMORY | ADDRESS
AD,-AD, Tz D, DATA | (D,Dy HEE
ALE / N\,

10/M,S, S, >< 1I0M=0, |\ S; =1 | Sp=0

- — A

Memory Write Machine Cycle of 8085:

Prof. (Dr.) Saibal Pradhan, CEMK Page - 58

http://www.8085projects.info/images/Timing-Diagram-Pic3-pic39.png

Intel 8085 Microprocessor

i@ The memory write machine cycle is executed by the processor to write a data byte in a memory
location.

i The processor takes, 3T states to execute this machine cycle.

SIGNAL y T T,

cLoCK WM

Ays-Ay S HIGHER | ORDER ADDRESS

ADT_ADG : : mlgtmm -------- DATA {D-’-D.) i

1/0 Read Cycle of 8085:

i@ The l/0 Read cycle is executed by the processor to read a data byte from 1/0 port or from the
peripheral, which is I/0, mapped in the system.

i The processor takes 3T states to execute this machine cycle.
i@ The IN instruction uses this machine cycle during the execution.
SIGNAL T, T " e
- CLOCK \ﬁj
ALAg >(O Port address
AD.-AD, >(/O Port address) = ;-r - DD _—
ALE / b \
I0/M.S, S, Y 7 1oM=1, \ S, -1 | Sg=0
o J /—

1/0 Write Cycle of 8085:
W The I/0 write machine cycle is executed by the processor to write a data byte in the I/0 port or to a
peripheral, which is I/0, mapped in the system.
i The processor takes, 3T states to execute this machine cycle.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 59

http://www.8085projects.info/images/Timing-Diagram-Pic5-pic41.png

Intel 8085 Microprocessor

SIGNAL T, T, TS _
cLock N______~ D ____~ I©N___~ 1
Bt |50 PORT ADDRESS

AD,-AD, [> PORT ADDRESS J}- - ----- - DATA | (D, Do C -

ALE - L7\

_IOfﬁ,S,_Sn :>< IO =1, S, =0, So=1

Timming Diagram of 8085 Instructions

i The 8085 instructions consist of one to five machine cycles.

i Actually the execution of an instruction is the execution of the machine cycles of that instruction in the
predefined order.

W The timing diagram of an instruction ate obtained by drawing the timing diagrams of the machine cycles
of that instruction, one by one in the order of execution.

TIMING DIAGRAM OF 8085 INSTRUCTIONS
Timing diagram for STA 526AH.

i STA means Store Accumulator -The contents of the accumulator is stored in the specified

address(526A).

i The opcode of the STA instruction is said to be 32H. It is fetched from the memory 41FFH(see fig). - OF
machine cycle

i Then the lower order memory address is read(6A). - Memory Read Machine Cycle

i Read the higher order memory address (52).- Memory Read Machine Cycle

im The combination of both the addresses are considered and the content from accumulator is written in
526A. - Memory Write Machine Cycle

i Assume the memory address for the instruction and let the content of accumulator is C7H. So, C7H from

accumulator is now stored in 526A.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 60

Intel 8085 Microprocessor

Dponde fatoh | Memory read mhﬂamam‘r&mﬁ mﬁﬂemnwwﬁi& N
k % T %' e T T .

AAAAAAARAARAAA
ADGA X Pel){ ¥ - - L;ﬁ‘- Lm Ot A 45, | =
T e 7 N sy Wy
o e o e i | &
T T MY

o+ SRS NS S MR A i ST S S i
" l 1 T |/

q

e
A

Crpocoles Fatoh:

| |
mfm,sﬂigljr 01,1 001 [¥ [0 [Y [mLg
e

1, MEmiory read | B read o]
l"l) ’r\'h. = &"‘{
T, T,

WV WaWaWa
:..{':':'!}_ £ <o, [< [SEG-] ~
C an,, ¥ : Eﬂ"?

LR =

S
<

26,

»
QU
:
|57}
<
)
H
&3
iG]
m
£
1
|
1
[

=
=

!

1

>
»
o
=

|

:
:
5

9
H

it}rﬁ_sﬂ,_é_

s e e S o o

r
e
=
Ee

G, 0, 1 Y 11.0.1)

Prof. (Dr.) Saibal Pradhan, CEMK Page - 61

http://www.8085projects.info/images/Timing-Diagram-Pic7-pic43.png
http://www.8085projects.info/images/Timing-Diagram-Pic9-pic44.png

Intel 8085 Microprocessor

Timing diagram for INR M
i Fetching the Opcode 34H from the memory 4105H. (OF cycle)
i Let the memory address (M) be 4250H. (MR cycle -To read Memory address and data)
W Let the content of that memory is 12H.
& Increment the memory content from 12H to 13H. (MW machine cycle)

Address | Mpemonics | Opcode

4105 IME. IV Hy

-

Tpcode falch |, Memoryread |, Memory wiits |

7 T1 Iz]"3 Tdb—rl;ﬂT5 Ta T, FPTR Tg 1rm I
o ‘ .

NV Va Va Vs
AD AL Y05 [~{(34, W - - 4750, [y 2, % 4 5o, 13, 1}
chc DU Ton D--4C T [I Tl D
N 1\

e

_| . e
]
WR | D B e SR SR T
I LJ
el |
IG/M,S), 5, 0,1,1i Y 1y 10,1,0
P | i e T -

e S

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 62

http://www.8085projects.info/images/Timing%20Diagram%20-Pic7c.PNG
http://www.8085projects.info/images/Timing-Diagram-Pic10-pic45.png

Intel 8085 Microprocessor

Timing diagram for MVI B, 43H.

W Fetching the Opcode 06H from the memory 2000H. (OF machine cycle)
W Read (move) the data 43H from memory 2001H. (memory read)
¥
M, (Opcode Fetch) M, {Memory Read)
T, T: Ty T! TI 1_ T, 1 Th
High-Order | ; High-Order
feAg] M pemory Address | | UmPecified | 20w Memary Address
Low-Order | b v Oroker
D '
I e L o e RO o - Lo
Memory Address _ emory Address
ELEV—-\]
oM Opcode
5 & Isum IV = 0.8, = 1.5y = 1 gy 'R = 0,5, = 1.5, = 0 Staus
et J 1 |
&D ! L

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 63

http://www.8085projects.info/images/Timing-Diagram-Pic11-pic46.png

Intel 8085 Microprocessor

Interrupts

Diverting the pP from its normal program flow is called interrupt. External I/O devices may
require the attention of the uP at any point of time. This may be achieved in two ways:

1. to scan or poll them and

2. to use interrupts.

Scanning is just what it sounds like. Each possible event is scanned in a sequence, one at a time.
This is ok for things that don't require immediate action. Interrupts, on the other hand, cause the
current process to be suspended temporarily and the event that caused the interrupt is serviced, or
handled, immediately. The routine that is executed as a result of an interrupt is called the
interrupt service routine (ISR), or recently, the interrupt handler routine.

In the 8085, as with any CPU that has interrupt capability, there is a method by which the
interrupt gets serviced in a timely manner. When the interrupt occurs, and the current instruction
that is being processed is finished, the address of the next instruction to be executed is pushed
onto the Stack. Then a jump is made to a dedicated location where the ISR is located. Some
interrupts have their own vector or unique location where its service routine starts. These are
hard coded into the 8085 and can't be changed (see below).

TRAP - has highest priority and cannot be masked or disabled. A rising-edge pulse will cause a
jump to location 0024H.

RST 7.5- 2™ priority and can be masked or disabled. Rising-edge pulse will cause a jump to
location 7.5 * 8 = 003CH.

This interrupt is latched internally and must be reset before it can be used again.

RST 6.5 — 3" priority and can be masked or disabled. A high logic level will cause a jump to
location 6.5 * 8 = 0034H.

RST 5.5 — 4th priority and can be masked or disabled. A high logic level will cause a jump to
location 5.5 * 8§ = 002CH.

INTR — 5th priority and can be masked or disabled. A high logic level will cause a jump to
specific location as follows:

When the interrupt request (INTR) is made, the CPU first completes its current execution.
Provided no other interrupts are pending, the CPU will take the INTA pin low thereby
acknowledging the interrupt. It is up to the hardware device that first triggered the interrupt, to
now place the op-code of a RST n (n=0 to 7) instruction to the CPU to the service routine after
the PC contains to be pushed in the stack.

You will notice that there are not many locations between vector addresses. What is normally
done is that at the start of each vector address, a jump instruction (3 bytes) is placed, that jumps
to the actual start of the service routine which may be in RAM. This way the service routines can
be anywhere in program memory. The vector address jumps to the service routine. There is more
than enough room between each vector address to put a jump instruction. Looking at the table
above, there are at least 8 locations for each of the vectors except RST 5.5, 6.5, and 7.5. When
actually writing the software, address 0000h will have a jump instruction that jumps around the
other vector locations.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 64

Intel 8085 Microprocessor

Besides being able to disable/enable all of the interrupts at once (DI / EI) ie: except TRAP, there
is a way to enable or disable them individually using the SIM instruction and also, check their
status using RIM.

There are other things about interrupts that we will cover as they come up, but this lesson was to
get you used to the idea of interrupts and what they're used for in a typical system. It’s similar to
the scene where one is standing at a busy intersection waiting for the traffic light to change,
when a person came up and tapped us on the shoulder and asked what time it was. It didn't stop
us from going across the street, it just temporarily interrupted us long enough to tell them what
time it was. This is the essence of interrupts. They interrupt normal program execution long
enough to handle some event that has occurred in the system.

Polling, or scanning, is the other method used to handle events in the system. It is much slower
than interrupts because the servicing of any single event has to wait its turn in line while other
events are checked to see if they have occurred. There can be any number of polled events but a
limited number of interrupt driven events. The choice of which method to use is determined by
the speed at which the event must be handled.

The software interrupts are the instructions RST n, where n = 0 — 7. The value n is multiplied by
8 and the result forms an address that the program jumps to as it vector address ie: RST 4 would
jump to location 4*8 = 32 (20H).

Interrupts and their starting addresses:

SL Name Address Type Priority Maskable
1 RST 0 00H Software -
2 RST 1 08H Software -
3 RST 2 10H Software -
4 RST 3 18H Software -
5 RST 4 20H Software -
6 TRAP 24H Hardware Highest No
7 RTS 5 28H Software -
8 RTS 5.5 2CH Hardware 2™ highest Yes
9 RST 6 30H Software -
10 | RST®6.5 34H Hardware 3" highest Yes
11 RST 7 38H Software -
12 | RST7.5 3CH Hardware 4™ highest Yes
13 INTR RTS0-7 Hardware Lowest Yes

Internal organization of the interrupt system:

Prof. (Dr.) Saibal Pradhan, CEMK Page - 65

Intel 8085 Microprocessor

RST
7.5

RST
6.5

Reset—O
RST?7.5 int recognized

=D

»

RST
5.5

TRAP

) U

INTR

DI —O
Reset —QO

=

Any interrupt acknowledged

SIM — Set interrupt Mask

-

003CH

0034H

002CH

0024H

Get RST 0-7 from
external Hardware

7 6 5 4 3 2 1 0
SOD | SDE | XXX | R7.5 | MSE | M7.5 | M6.5 | M5.5
- J
4
Set Mask RST 7.5, RST 6.5 and RST 5.5
Mask Set Enable
Prof. (Dr.)[Saibal Pradhan, CEMK Page - 66

Intel 8085 Microprocessor

Reset RST 7.5

Ignored

Serial data enable, if 1, bit 7 is output serial output
data latch

Serial output data; ignored if bit 6 is 0
This is a one byte instruction and can be used for three different purposes
1. Toreset RST 7.5 flip-flop. If D4=1 then RST 7.5 is reset.
2. To set mask for RST 7.5, RST 6.5 and RST 5.5 interrupts. Bit D3 is a control bit and
should be made 1 for D2, D1 and DO to be effective. Logic 0 will enable and 1 will
disable the corresponding interrupts

3. To output serial data. Bit D7 of the accumulator is sent out to the SOD pin if D6 is 1

RIM — Read Interrupt Mask

7 6 5 4 3 2 1 0

SID |I75 165 |I55]IE M7.5 | M6.5 | M5.5

- J
hd hd

Read Mask RST 7.5, RST 6.5 and RST 5.5: 1 = masked
Interrupt Enable Flag: 1 = enable

Pending Interrupt: 1 = pending

Serial output data

This is a single byte instruction and is used to check for pending interrupts. It performs the three
following functions

1. To read interrupt masks

2. To receive Serial data

3. To identify pending interrupts.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 67

Intel 8086/88 Microprocessor

History of Intel Microprocessors

The Intel introduced 4004, world’s first microprocessor, in early 1970’s. It was a 4-bit microprocessor
and could address 4096 4-bit memory locations. 4004 instruction set contained only 45 instructions. It was
fabricated by the then current state-of-the-art P-channel MOSFET technology. It could execute at the rate of 50
KIPs.

The evolution of 4-bit microprocessor ended with 4040 an upgraded version of 4004. 4040 operated at
higher speed but lacked improvement in word size and addressing capability.

In 1971, Intel introduced 8008, the first 8-bit microprocessor. It could address up to 16K bytes and had
48 instructions. Its small memory size, low speed and instruction set limited its usefulness. Intel appreciated
these limitations and came up with 8080 in 1973 - the first of the modern 8-bit microprocessors. 8080 could not
only address 64K bytes memory and execute more instructions but also it executed them 10 times faster than
8008. In 1978, Intel introduced an updated version of 8080 - the 8085. The 8085 was the last 8-bit general
purpose microprocessor developed by Intel. 8085 executed software even in higher speed. The main advantages
of 8085 are its internal clock generator, internal system controller and higher clock frequency.

Intel 8086/88 Microprocessor

In 1978, Intel released the 8086 microprocessor; a year later, it released the 8088. Both devices were
16-bit microprocessors, which executed instructions in as little as 400 ns (2.5 MIPs). This was a major
improvement in operating speed with respect to 8085. In addition, the 8086/88 addressed 1M bytes memory.
The number of instructions increased from 246 in 8085 to well over 20,000 variations in 8086/88. Note that
these microprocessors are called CISC (complex instruction set computers) because of the number and
complexity of instructions. The other distinct feature found in the 8086/88 was the introduction of a small 6 or 4
bytes instruction cache or queue that pre-fetched a few instructions before they were executed. The queue
sped the operation of many sequences of instructions and proved to be the basis for the much larger instruction
caches found in modern computers.

Dr. Saibal Kumar Pradhan, CEMK Page 1

Intel 8086/88 Microprocessor

The Programming Model

Before a low-level program (assembly and machine language) is written, the internal architecture of the
microprocessor must be known. Program visible internal architecture of 8086/88 microprocessors is shown in
Fig.1 below:

8-bit 16-bit 8-bit
names names names

AH AX AL | Accumulator
BH BX BL | Base index
CH CX CL | Count
DH DX DL | Data
SP Stack pointer
BP Base pointer
DI Destination index
Sl Source index
IP Instruction pointer
FLAGS Flags
CS Code Segment
DS Data segment
SS Stack segment
ES Extra segment

Fig.1: The Programming Model of the Intel 8086 through Pentium 4.

The Programming model contains 8 and 16-bit registers. The 8-bit registers are AH, AL, BH, BL, CH, CL, DH
and DL and are referred by these two letter names in instructions. The 16-bit registers are AX, BX, CX, DX, SP, BP,
Sl, DI, IP, FLAGS, CS, DS, SS and ES.

Some registers are general purpose or multi-purpose, and some are dedicated and have special purposes.
The multi-purpose registers are AX, BX, CX, DX, BP, DI and Sl. These registers hold various data and are used for
almost any purpose as indicated by the program.

Multipurpose Registers

AX (Accumulator): AX can be used as a 16-bit register or AL/AH can be used as 8-bit registers. The accumulator
is used for instructions such as multiplication, division, input and output and some of the adjustment
instructions. For these instructions, the accumulator has a special purpose. AL and AX act as accumulator for 8-
bit and 16-bit operations respectively.

BX (Base index): This register can be addressed as BL, BH or BX. The BX register sometimes holds the offset
address of a memory data.

Dr. Saibal Kumar Pradhan, CEMK Page 2

Intel 8086/88 Microprocessor

CX (Count): CX is a general-purpose register and can be referred as CL, CH or CX. In some instructions, CL or CX
holds the count for repetitive/iterative operations. Instructions that use a count are the repeated string
instructions (REP/REPE/REPNE); and shift, rotate and LOOP instructions. The shift and rotate instructions use CL
and LOOP and repeated string instructions use CX as count.

DX (Data): DX is also a general-purpose register and can be used as DL, DH or DX. For multiplication and division
instructions, DX is used to hold a part of operand/result. DX is also used as I/O pointer.

BP (Base pointer): BP is used to hold the offset address of a memory location in Stack Segment.

DI (Destination index): DI can be used to hold the offset address of a general memory (Data Segment). For string
instructions, it holds the offset address of the destination string in Extra Segment.

SI (Source index): Sl can be used to hold the offset address of a general memory (Data Segment). For string
instructions, it holds the offset address of the source string in Data Segment.

Special Purpose Registers
Special purpose registers include Instruction Pointer (IP), Stack Pointer (SP), Flag Register (FLAGS), and
segment registers CS, DS, SS and ES.

IP (Instruction Pointer): IP holds the offset address (in Code Segment) of the next instruction to be executed. It
can be modified by a call or a jump instruction.

SP (Stack Pointer): SP holds the offset address of the stack memory (Stack Segment).

FLAGS: Flags indicate the condition of the microprocessor and control its operations. 8086/88 have a 16-bit flag
register. Different flags for 8086/8088 microprocessor are as follows:

15 14 13 12 11 10 9 8
-]l -l-1l~-TofpDp [1 [7T]

7 6 5 4 3 2 0
slz]-Jal-]rp[-]c]

Fig.2: Flags of 8086/88 Microprocessor

Flag register has 9 active flags. The first five viz. C (carry), P (Parity), AC (auxiliary carry), Z (zero) and S (sign) are
8085 like flags and the remaining four are new in 8086/8088. They are T (trap), | (interrupt), D (direction) and O
(overflow).

C (Carry): This flag holds the carry after addition and borrow after subtraction.

P (Parity): Parity is logic O for odd parity and logic 1 for even parity. Parity is the count of ones in a number
expressed as even or odd. For example, a binary number has four 1s, so the parity is even. A number having no
1s, has the even parity.

AC (auxiliary carry): The auxiliary carry holds the carry after addition or borrow after subtraction between bit
position 3 and 4 of the results. This is used for adjustment of the result for BCD operations.

Dr. Saibal Kumar Pradhan, CEMK Page 3

Intel 8086/88 Microprocessor

Z (zero): This flag indicates whether the result is zero or non-zero. It will be set if the result is zero and reset if
non-zero.

S (sign): Sign flag indicates polarity of the result. Set if negative and reset if positive. So, it is same as the most
significant bit (msb) of the result.

T (trap): The trap flag enables trapping (debugging) through an on-chip debugging feature. If T=1,
microprocessor interrupts after execution of every instruction and goes to a service routine so that the
programmer can verify the contents of registers, memory etc.

I (interrupt): The interrupt flag enables or disables the INTR input pin. If =1, INTR pin is enabled. The state of the
Interrupt flag can be set or reset by STI (set interrupt flag) and CLI (clear interrupt flag) instructions.

D (direction): The direction flag determines auto increment or auto decrement of Sl and DI registers for string
operations. If D=1, the registers are automatically decremented and if D=0, they will automatically be
incremented. STD (set direction) and CLD (clear direction) instructions are used to set and reset this flag.

O (overflow): Overflows occur when sign numbers are added or subtracted. An overflow indicates that the
result has exceeded the capacity of destination register/memory. For example, if 7FH (+127) is added, using an
8-bit addition, with 01H (+1), the result will be 80H (-128) - this is an overflow condition and indicated by the
overflow flag becoming set. For unsigned operation the overflow flag is ignored.

Segment Registers: Though the 8086/88 has 1 MB memory, all are not active at any point of time. The whole
memory is partitioned into 16 segments of 64 KB each. Out of these 16 segments, only 4 segments are active at
a time. The four active memory segments are: (i) Code Segment, an area to keep aside for program codes, (ii)
Data Segment, to store the data generated/to be used by the program, (iii) Stack Segment to keep aside for
stack area and (iv) Extra Segment to store data again. Starting addresses, sometimes called base address, of
these four segments are pointed out by four segment registers CS, DS, SS and ES. Addressing within a segment is
done by supplying the displacement/offset of the memory with respect to this base address through index and
pointer registers viz. S, DI, BX, SP, BP and IP.

Fig.3 illustrates the segmentation and active segments of memory for 8086/88 microprocessor.

FFFFFH

Code Segment

Dr. Saibal Kumar Pradhan, CEMK Page 4

Intel 8086/88 Microprocessor

60000H
CS=6000H I
Stack Segment
DS=3000H | 50000H
SS=5000H J
ES=1000H
Data Segment
30000H
Extra Segment
10000H
0OO000OH

Fig.3: Memory Segmentation and active segments for 8086,/88 microprocessor

Actual address of a memory location is 20-bit wide. But the segment registers can store only 16-bit data. So, a
default OH is placed at the right of a segment register to indicate the starting address of the corresponding
segment. The 16-bit displacement to point any memory location within a segment is then supplied through
pointer registers or index registers or 8-bit/ 16-bit displacements or any suitable combination of these three.
Thus, the actual 20-bit address can be formed as follows:

20-bit actual address = Segment register x 10H + 16-bit displacement/offset

The 20-bit actual address is called Physical Address (PA), the 16-bit displacement is called Offset address and the
content of the segment register is called the segment address.

An alternative way of representing physical address is the segment base:offset. A segment base and an offset
describe a logical address in 8086/88 microprocessor system.

Default segment and offset combinations: The source of the offset depends on which segment is used for
addressing. For code segment, IP is the default source of the offset address. Thus, CS:IP gives the physical
address of the current instruction to be fetched for execution. For string operations, Sl is the source of default
offset for data segment and DI is the source of default offset for extra segment. Other than string operations, SI,
DI and BX are used to supply the offset address for data segment. SP and BP are the default sources of offset
address for stack segment. A provision called the segment override prefix is used to change the segment from
which the variable is accessed. A data is always accessed from the data segment. If one wants to access data
from other segments one must specify the new segment in the instruction itself through segment override
prefix. For example,

MOV AX, [BX] ; Physical Address, PA = DS:BX, default segment is DS
ADD AX, [SI] ; PA = DS:SI, default segment is DS
ADD AX, CS:[BX] ; Example of Segment override prefix, PA = CS:BX

Internal Architecture of 8086/88

Dr. Saibal Kumar Pradhan, CEMK Page 5

Intel 8086/88 Microprocessor

As shown in Fig.4, the internal architecture of 8086/88 is divided into two independent functional units
called Bus Interface Unit (BIU) and Execution Unit (EU). BIU organizes and controls the operations of address and
data buses which include address generation, instruction fetching, data read from memory and 10 and data
write to memory and 10 devices. Thus, BIU handles all transfer of data and addresses on the bus for Execution
Unit. On the other hand, the Execution Unit tells the BIU where to fetch instructions and data from, decodes
instructions and executes them.

The EU contains the control units which direct the internal operations. A decoder in EU translates the instruction
into a series of actions which EU carries out. EU has a 16-bit Arithmetic and Logic Unit (ALU) which can add,
subtract, AND, OR, XOR, increment, decrement, complement or shift binary numbers.

Dr. Saibal Kumar Pradhan, CEMK Page 6

Intel 8086/88 Microprocessor

ADI16-AD19/STATUS ADO-AD15

11 Il

Memory address & Data Bus Interfacing

BIU

Addr. Conv.Mechanism 6
== 5
i ;
CS
3
DS
2
SS
1
ES
IP

- 17 v .

BX BH BL Decoding Circuit

X CH CL
SP

Timing & Control Circuit

BP \

, g
DI Flags (16)

Clock & Control Signal

EU

Fig.4: Internal Architecture of 8086/88 Microprocessor
While EU decodes or executes an instruction which does not require the use of the buses, the BIU fetches up to
6 bytes for 8086 and 4 bytes for 8088 for the following instructions and stores them in an internal first-in-first-

Dr. Saibal Kumar Pradhan, CEMK Page 7

Intel 8086/88 Microprocessor

out (FIFO) register called queue or cache. After the execution of the current instruction, the EU does not fetch
the next instruction from memory; rather it simply reads it from the internal queue. This is much faster than
instruction fetching from memory. This pre-fetch and queue scheme greatly speeds up the operation of the
8086/88. This fetching of next instruction while the current instruction is executed is called pipelining. The
architecture supporting pipelining is called pipelined architecture.

Microprocessor without Pipelined Architecture

Fetchl Decodel Executel Fetch2 Decode2 Execute2 Fetch3 Decode3 Execute3
Microprocessor with Pipelined Architecture
BIU Fetchl Fetch2 Fetch2 Fetch3 Fetch3
EU Decodel Executel Decode?2 Execute2 Decode3 Execute3
Save in time >

Fig. 5: A comparison of operations of microprocessors having simple and pipelined architecture showing faster
instruction execution in case of pipelined architecture

Dr. Saibal Kumar Pradhan, CEMK

Page 8

Intel 8086/88 Microprocessor

Instruction Templates

Number of instructions is huge in 8086/88 and thus it is not possible to provide any concise list of instructions
like 8085 for programmer’s reference. Ways an operand can be expressed in an 8085 instruction is limited, but it
is much larger in case of 8086/88. This leads to a wide variation of each 8086/88 instruction. For example, there
are 32 ways to specify the source operand in an instruction such as MOV CX, source. The source can be any one
of eight 16-bit registers, or a memory location specified by any one of 24 memory addressing modes. If CX is
made source, also there are 32 ways one can express the destination. So MOV instruction, having CX as one of

the operands, can be written in 64 different ways. Likewise, another 64 codes are required for MOV using CL as

source or destination and 64 more codes for MOV with CH as source or destination. Thus, MOV instruction with

CX (including CL and CH) has 192 variants and it is impracticable to provide a list of all possible instructions of
8086/88. Instead, a template for each basic instruction can be used to generate the codes of the instructions of
8086/88. Fig. 6 below describes such a template of MOV instruction:

Byte 1 Byte 2 Byte 3 Byte 4
tTololo]1]o T[]
OPCODE MOD REG R/M LOW DISPLACEMENT HIGH DISPLACEMENT

DIRECT ADDRESS
LOW BYTE

DIRECT ADDRESS
HIGH BYTE

OPCODE

D

w

MOD & R/M (5 bits)
REG

- Operation Code
- Direction TO/FROM REG; 0 = FROM, 1=TO
- Byte/Word Data; 0 = Byte, 1 = Word

- ADDRESSING MODE
- REGISTER SELECT

Fig. 6: Coding Template of MOV instruction

Dr. Saibal Kumar Pradhan, CEMK

Page 9

Intel 8086/88 Microprocessor

MOD and R/M bit patterns for 8086/88 instructions are shown in Fig. 7. Fig. 8 shows the bit pattern for REG field.

MOD 11
R/M 00 01 10 W=0 W=1
000 [BX]+[SI] [BX]+[SI]+d8 [BX]+[SI]+d16 AL AX
001 [BX]+[DI] [BX]+[DI] +d8 [BX]+[DI] +d16 CL CX
010 [BP]+[SI] [BP]+[SI] +d8 [BP]+[SI] +d16 DL DX
011 [BP]+[DI] [BP]+[DI] +d8 [BP]+[DI] +d16 BL BX
100 [sh] [SI] +d8 [SI] +d16 AH SP
101 [DI] [DI] +d8 [DI] +d16 CH BP
110 dié [BP] +d8 [BP] +d16 DH Sl
(direct address)
111 [BX] [BX]+d8 [BX]+d16 BH DI
MEMORY ADDRESSING REGISTER ADDRESSING

Fig. 7: MOD and R/M bit patterns in instruction template of 8086/88 microprocessor

General Purpose Registers Segment Registers
REG bit pattern | 8-bit Registers (W=0) | 16-bit Registers (W=16) CODE SEGMENT REGISTER
000 AL AX 00 ES
001 CL CX 01 CS
010 DL DX 10 SS
011 BL BX 11 DS
100 AH SP
101 CH BP
110 DH S|
111 BH DI

Fig. 8: Registers codes

Example-1:

MOV AX, BX =>10001011 || 11000011 =>8B C3H ; “TO” REG

-OR- =>10001001 || 11011000 =>89 D8H ; “FROM” REG
Example-2:

MOV AX, [BX][SI]1234H =>10001011 || 10 000 000 || 0011 0100 || 0001 0010 => 8B 80 34 12H

The coding template of MOV instruction for segment override prefix is shown in Fig. 9 below. It is a 3-byte code
and an extra byte will be added for new segment before byte1 and byte2 of normal MOV instruction.

Byte 1 Byte 2 Byte 3
Segment Override Prefix

oloj1] | J1farfoJafofofofsfofD|w] [[[| [| |

Dr. Saibal Kumar Pradhan, CEMK Page 10

Intel 8086/88 Microprocessor

| SEG REG | OPCODE | | ImMoD| REG | R/M |

Fig. 9: MOV instruction coding template for segment override prefix
Example-3:
MOV CS:[BX],DL =>00101110 || 10001000 || 00 010 111 => 2E 88 17H

Addressing Modes

Microprocessors operate on data which are commonly known as operands. Operand in an instruction may be
the content of a register, a memory or it can be a constant. There are numerous ways to express them in an
instruction and are known as data-addressing modes. Similarly, program address, in case of control transfer
instructions, may be expressed in different ways giving rise to program memory-addressing modes.

Data-Addressing Modes: The five fields of an assembly language instruction are as shown in Fig.10.

[Label:] OPCODE [Destination] [Source] [; Comments]
Fig. 10: General format of an assembly language instruction.

The fields within brackets are optional, so an instruction may not have all the fields. “Label” is used to refer an
instruction from other parts of an assembly language program and is ended with a colon. It is case sensitive. No
other fields are case sensitive. “Opcode” is the short form of the operation to be performed by the
microprocessor and sometimes called “Mnemonic” meaning memory-aid as it helps us to remember the
operation. “Destination” and “Source” are the two operands and indicate the data flow direction. Data flows
from source to destination. “Comment” always starts with a semicolon. Assembler always ignores anything
written after a semicolon. Comment is used for documentation purpose only which helps us to understand the
purpose of use an instruction or a group of instructions or the whole program in future. A comment may appear
either at the end of an instruction or even in a new line.

Various types of Data-addressing modes are as follows:

1. Register Addressing It refers different ways of expressing registers, byte or word, in an instruction. For

example,
MOV AX, BX ; This instruction copies the content of BX register to AX register
ADD AL, CL ; This instruction adds the contents of AL and CL registers and puts

the result in AL

2. Immediate It refers that the source is a constant data often called an immediate data as it
Addressing appears in memory immediately after the opcode. For example,
MOV AL, 12H ; This instruction places 12H in AL register
ADD AX, 1234H ; This instruction adds 1234H with AX and accumulates result in AX

3. Memory Addressing It refers different ways of indicating a memory location storing an operand in an
instruction. Memory location may be indicated directly along with the opcode. Then it

Dr. Saibal Kumar Pradhan, CEMK Page 11

Intel 8086/88 Microprocessor

3A. Direct Addressing

3B. Register-Indirect
Addressing

3C. Base-plus-index
addressing

3D. Register relative
Addressing

3E. Base relative-plus-
index addressing

is called direct addressing. It may also be expressed indirectly through a pointer
register BX, BP, SP, Sl, DI, DX or their suitable combinations as indicated in Fig.7 giving
rise to different indirect addressing.

Note: Both the operands in an instruction can never be memory except string
instructions.

Offset address of the memory operand is present in the instruction itself. For
example,

MOV AL, [1234H] ; Here a byte data is copied from memory in data segment having
offset address 1234H

In this case, offset address of a memory operand is supplied through one of index or
base registers i.e. Sl, DI, BX. For example,

MOV CL, [BX], this instruction loads the content of a memory location in data segment
whose offset address is kept BX into CL. Other examples are OR AX, [SI]; ADD [DI], DX;
INC WORD PTR [BX] etc.

Base-plus-index addressing refers a memory operand addressed by a base register (BP
or BX) plus an index register (SI or DI). For example,

MOV AL, [BX][SI], this instruction copies the content of a memory location in data
segment whose offset address is the sum of BX and SI. Other examples are ADD AX,
[BP][DI], INC BYTE PTR [BX][DI] etc.

Register relative addressing refers a memory operand whose offset address is
supplied through an index or a base register plus a displacement, 8-bit or 16-bit. For
example,

MOV AH, [BX]12H ; ADD AX, [SI]1000H etc.

In this case, the offset of the memory operand is supplied through a base register plus
an index register plus an 8-bit or a 16-bit displacement. For example,
MOV AX, [BX][SI]12H ; ADD BX, [BP][SI]1234H etc.

Program Memory Addressing: It is used with JMP (jump) and CALL instructions and is of three distinct forms -
direct, relative and indirect.

Direct Program
Memory Addressing

In case of direct program memory addressing, JMP and CALL instructions take the
execution control beyond the current code segment called inter-segment CALL or
JMP. In this case, the address is stored with the opcode by two 16-bit values, one for
code segment and the other for offset. The direct jump or call are often called far
jump or call. For example,
HERE: JMP FAR BEGIN, in this case, the labels HERE and BEGIN are in different code
segments, the machine code of this instruction considering HERE as 2000:100H and
BEGIN as 5000:1234H is:

Opcode Offset Low Offset High SegmentLow Segment High
2000:100H EA 34 12 00 50
2000:105H

Dr. Saibal Kumar Pradhan, CEMK Page 12

Intel 8086/88 Microprocessor

Relative Program
Memory Addressing

The term relative means “relative to the instruction pointer (IP)”. Therefore, the
displacement (8-bit or 16-bit signed numbers) given in the instruction will be added

with IP to determine the new value of IP where from the next instruction will be taken
for execution. Relative jump and call are always intra-segment. 8-bit displacement can
take the execution backward by 128 bytes and forward by 127 bytes and are known
as short jump and call. On the other hand, 16-bit displacement can take the control
32768 bytes backward and 32767 bytes forward with respect to current IP position
and are called near jump and call. For example,

1000:0100
1000:0103
1000:0106
1000:0108
1000:010B
1000:010D
1000:010F
1000:0111

B8 00 20
BB 00 03
B2 00
0523F1
7302
FE C2
89 07
88 5702

1000:0200
1000:0203

E9 FD FE
EA 0001

00 10

BEGIN: MOV AX, 2000H

SKIP:

MOV BX, 300H
MOV DL,00H
ADD AX, F123H
JNC SKIP

INC DL

MOV [BX],AX
MOV [BX]02H,DL

; Short Jump, 2 bytes forward

JMP BEGIN ; Near Jump, 258B backward
JMP FAR BEGIN ; Inter-segment Jump

Note: Conditional jumps are short jumps.

Indirect Program
Memory Addressing

1000:0100
1000:0103
1000:0106
1000:0108

B8 00 02
BB 34 12
FF EO
FF 27

1000:010A FF 67 12

In case of indirect program memory addressing, jump and call locations are supplied
indirectly through registers or memory pointed out by registers. For example,

BEGIN: MOV AX, 200H

MOV BX, 1234H

JMP AX ; IP modified by AX

JMP [BX] ; IP modified by content of
; memory DS:BX

JMP [BX]12H ; DS:BX+12H

Dr. Saibal Kumar Pradhan, CEMK

Page 13

Intel 8086/88 Microprocessor

Dr. Saibal Kumar Pradhan, CEMK Page 14

Intel 8086/88 Microprocessor

Finding the Right Instruction

For finding the right instruction in right place we must know the instructions in groups of functional operations
like data transfer operations, logical operations, arithmetic operations, bit manipulation operations, string

operations, program execution transfer operations, processor control operations etc. The important instructions

under these groups are as follows:

MNEMONIC WITH OPs | DESCRIPTIONS | OP1 (DES OP) | OP2 (SOU OP) | OPERATION/EXAMPLE
DATA TRANSFER GROUP:
General-purpose byte or word transfer instructions:
MoV Copy bytes/words m8, r8, m16, r1é6 m8, r8, m16, r16, | OP1<0OP2
dg, d16
PUSH Save a word on stack ri6, m16 - (SP) €«0OP1
pPoOP Copy word from stack ri6, m16 - OP1 & (SP)
XCHG Exchange m8, r8, m16, r16 m8, r8, m16, r16 OP1<-> OP2
XLAT Translate using look-up | - - AL € (BX+AL); BX will not be
table modified.
Simple input and output port transfer instructions:
IN Read data from a port AL, AX 8p8, 8p16, DX AL < 8p8/DX
AX € 8p16/DX
ouT Write data to a port 8p8, 8p16, DX AL, AX 8p8/DX< AL
8p16/DX € AX
Special Address transfer instructions:
LEA Load effective address R16 m1é
(offset addr.) in register
Example of LEA:
1000:0100 3412 DATA1: DW 1234H
1000:0102 CDAB DATA2: DW ABCDH
1000:0104 2E 8D 36 00 01 BEGIN: LEA SI, DATA1 ; SI'=0100H
1000:0109 BE 02 01 MOV SI, OFFSET DATA2 ; SI=0102H
LDS/LES Loads DS/ES and mem | BX, BP, S, DI m16

ptr with the 32-bit
content of data
segment memory at
m16

Example of LDS/LES

DATA1: DW 1234H, 2000H

DATA2: DW ABCDH, 3000H

BEGIN: LES SI, DATA1 ; ES=2000H, SI=1234H
LDS DI, DATA2 ; DS=3000H, DI=ABCDH

Flag transfer instructions:

LAHF Load lower byte of Flag

register to AH register

SAHF Store content of AH
register to lower byte

of Flag Register.

PUSHF Push Flag Register in

Stack.

POPF Retrieve Flag Register

from Stack.

ARITHMETIC INSTRUCTIONS

Dr. Saibal Kumar Pradhan, CEMK

Page 15

Intel 8086/88 Microprocessor

Addition instructions:

ADD Arithmetic Addition of | m8, r8, m16,r1é m8, r8, m16, r16, | OP1<OP1+0OP2
two byte/word d8, d16 (Both the operands cannot be
operands memory)

ADC Arithmetic Addition of | m8, r8, m16,r16 m8, r8, m16, r16, | OP1<OP1+OP2+CY
two byte/word ds, d16 (Both the operands cannot be
operands plus previous memory)
carry

INC Increment operand by | m8,r8, m16, r1é OP1 € OP1+1
1

AAA Adjust Accumulator After adding ASCII data, AAA

after ASCII addition

gives correct unpacked BCD
result.

Example of AAA:
Assume AL=0011 1000, ASCII 8
BL=0011 0111, ASCII 7

ADD AL, BL ; AL=0110 1111 = 6EH which is incorrect BCD, Correct one should be 15
; AL=0000 0101, Unpacked BCD 5, CF=1 indicates the answer is 15 decimal.

AAA

DAA

Adjust Accumulator
after BCD addition

After adding packed BCD data
(one in AL), DAA gives correct
packed BCD result in CF & AL

Subtraction instructions:

SUB

Subtraction between

operands

m8, r8, m16, r16

m8, r8, mié, rié,
ds, d16

OP1<0P1-0P2
(Both the operands cannot be
memory)

SBB

Subtraction between
operands minus
borrow (Carry flag).

m8, r8, m16, r16

m8, r8, m16, rié,
ds, d16

OP1<0P1-0OP2-CY
(Both the operands cannot be
memory)

DEC

Decrement operand by
1

m8, r8, m16, r1é6

OP1 < OP1-1

NEG

Finds 2’s complement

m8, r8, m16, r16

OP1<2's Complement of OP1

CMP

Compares between
two operands by
subtracting op2 from
opl. Result is not
stored, only flags are
modified.

m8, r8, m16, r16

m8, r8, mié, rié,
ds, d16

FLAGS € OP1-OP2

AAS

Adjust Accumulator after ASCII subtraction

DAS

Adjust Accumulator after BCD subtraction

Multiplication Instructions:

MUL

Multiplication between
two unsigned 8-bit/16-
bit data, one stored in
AL/AX and other in
register/memory.

m8, r8, m16, r1é6

AX € AL*OP1 or
DX-AX €< AX*OP1

IMUL Multiplication between | m8, r8, m16, r16 AX € AL*OP1 or
two signed 8-bit/16-bit DX-AX € AX*OP1
data, one stored in
AL/AX and other in
register/memory.
AAM Adjust result after multiplying two ASCII digits (one must in AL) and gives unpacked BCD results in AX.
Division Instructions:
DIV Divides an unsigned 16- | r8,r16, m8, m1é AX + OP1 (r8/m8),

bit/32-bit number by
an unsigned 8-bit/16-
bit number. Dividend is
at AX/DX-AX and
divisor in r8, m8/r16,

AL=Quotient, AH=remainder
or

DX-AX <+ OP1 (r16/m16),
AX=Quotient, DX=remainder

Dr. Saibal Kumar Pradhan, CEMK

Page 16

Intel 8086/88 Microprocessor

m16. Remainder will be
in AH/DX.

IDIV -do- dealing with
signed integers

AAD Unlike other adjustment instructions, this instruction appears before a division. It converts an
unpacked 2-digit BCD number in AX into a 16-bit binary number which is then divided by an unpacked
number to generate a single digit quotient in AL and remainder in AH.

CBW It converts a signed byte data in AL into a signed word data in AX (2’s complement form). This is useful
when data lengths are not as per the requirements of IDIV and IMUL instructions.

CWD It converts a signed word data in AX into a signed double word data in DX-AX (2's complement form).

This is useful when data lengths are not as per the requirements of IDIV and instruction.

BIT MANIPULATION INSTRUCTION

Logical Instructions:

NOT Finds 1’s complement r8, r16, m8, m16

AND Finds bit-by-bit logical m8, r8, m16, r1é6 m8, r8, m1é6, ri16, | OP1 < OP1.0OP2
AND operation ds, d16
between two operands

OR Finds bit-by-bit logical m8, r8, m16, r16 m8, r8, m16, r16, | OP1 €« OP1+ OP2
OR operation between ds, d16
two operands

XOR Finds bit-by-bit logical m8, r8, m16, r1é6 m8, r8, m16, r16, | OP1 < OP1 @ OP2
XOR operation ds, d16
between two operands

TEST It performs logical AND | m8, r8, m16, r1é m8, r8, m1é, ri1é, | FLAGS €< OP1.0OP2

operation between two d8, d1é
operands, updates flags
but result not stored in
any of the operands.

Shift Instructions:

SHL/SAL

Shift left operand one | m8, r8, m16,r1é 1,CL
bit position/no. of bits
position in CL. A O is
inserted at Isb and msb
goes to CY.

SHR Shift (logical) operand | m8, r8, m16, r16 1,CL
right by CL times or
once. A O is inserted at
msb and Isb goes to CY.

SAR Shift (arithmetic) | m8, r8, m16, r16 1,CL

operand right by CL
times or once. Sign bit
is inserted at msb and
Isb goes to CY.

Rotate Instructions:

ROL

Rotate the operand left | m8, r8, m16, r1é 1,CL
once or by CL times.
msb goes to CY and Isb.

ROR

Rotate the operand | m8,r8, m16,r16 1,CL
right once or by CL
times. Isb goes to CY
and msb.

RCL

Rotate through CY the | m8, r8, m16, ri1é 1,CL
operand left once or by
CL times. msb goes to
CY and CY to Isb.

RCR

Rotate through CY the | m8, r8, m16, r16 1,CL
operand right once or
by CL times. Isb goes to

Dr. Saibal Kumar Pradhan, CEMK Page 17

Intel 8086/88 Microprocessor

| CY and CY to msb. | | |

STRING ISTRUCTIONS

A string is a series of bytes or words stored in successive memory locations. In the list a “/” is used to separate different mnemonics for
the same instruction. A “B” is used to identify the byte string and a “W” is used to identify the word string. For string instructions, Sl and
DI will automatically be incremented if DF=0 and decremented if DF=1. SI/DI will be incremented or decremented by 1 for byte string and
by 2 for word string.

REP It is an instruction prefix. The string instruction next to REP will be
repeated CX times.

REPE/REPZ This is a variant of REP. The string instruction next to REPE/REPZ is
repeated until CX=0 or ZF=1.

REPNE/REPNZ This is the other variant of REP. The string instruction next to
REPNE/REPNZ is repeated until CX=0 or ZF=0.

MOVS/MOVSB/MOVSW Copies a string with byte/word data from data segment memory

pointed out by SI (DS:SI) to extra segment pointed out by DI (ES:DI).
The size of the string is indicated by CX.

COMPS/COMPSB/COMPSW Compares two strings with byte/word data stored at DS:SI and ES:DI.
The instruction is normally used with REPE/REPNE, this causes the
search to continue as long as an equal/not equal condition exists and
CX becomes not zero.

INS/INSB/INSW Reads string from an Input port.

OUTS/OUTSB/OUTSW Writes string to an output port.

SCAS/SCASB/SCASW It scans a string in extra segment addressed by DI to find a match
with AL/AX

LODS/LODSB/LODSW This instruction loads AL/AX with data stored in Data Segment
pointed out by SI.

STOS/STOSB/STOSW This instruction stores AL/AX to memory at extra segment pointed
out by DI.

PROGRAM EXECUTION TRANSFER INSTRUCTIONS:

These instructions are used to instruct the 8086/88 to start from a new location, rather than continuing in sequence.

Unconditional transfer instructions:

CALL This instruction transfers the program execution to a subroutine. The subroutine may be within the
current code segment or may be outside. Within segment, subroutine is called through CALL NEAR
and outside the current code segment, subroutine is called through CALL FAR. When 8086/88
executes a near call instruction, it pushes the offset address of the instruction next to CALL in stack
and when executes far call, it pushes segment as well as offset addresses of the next instruction in
stack. Near call is also called intra-segment call and far call is called as inter-segment call.

RET Return instruction appears as the last instruction of the subroutine. This instruction retrieves back the
value of IP or IP & CS from stack depending upon near and far call.

IMP This instruction transfers the execution to some other address. Like call, jump can also be near jump
or far jump.

Conditional transfer instructions:

These instructions are often used after a compare instruction. The terms below and above refer to unsigned binary numbers. Above
means larger in magnitude. The terms greater than or less than refer to signed binary numbers. Greater than means more positive. All
the conditional jumps are short jumps meaning the destination address will be within 128 bytes backward and 127 forward from the
current value of IP.

JA/INBE Jump if above/not below equal
JAE/INB Jump if above equal/not below
JB/JNAE Jump if below/not above equal
JC Jump if carry (set)

JE/)Z Jump if equal/zero

JG/INLE Jump if greater/not less equal
JGE/JNL Jump if greater equal/not less
JL/JNGE Jump if less/not greater equal
JLE/ING Jump if less equal/not greater
INC Jump if no carry (reset)
INE/JNZ Jump if not equal/not zero
IJNO Jump if no overflow

Dr. Saibal Kumar Pradhan, CEMK Page 18

Intel 8086/88 Microprocessor

INP/JPO Jump if no parity (parity bit is reset)/jump if parity odd
INS Jump if no sign (positive)

JO Jump if overflow (overflow flag set)

JP/JPE Jump if parity (parity bit set)/even parity

JS Jump on sign (negative)

Iteration Control instructions:

These instructions are used to repeat a set of instructions for a few times. CX must be loaded with the number of iterations beforehand.
After execution of each LOOP instruction, CX is decremented by 1 and execution will jump to the destination specified after LOOP
instruction. When CX=0, execution goes to the instruction next to LOOP. LOOP is an unconditional loop. Other variants of loop i.e. LOOPE
or LOOPNE are conditional loops where loop may be stopped depending upon other flag condition even before CX=0.

LOOP Loop CX times

LOOPE/LOOPZ Loop until CX=0 or ZF=1

LOOPNE/LOOPNZ Loop until CX=0 or ZF=0

JCXZ Jump if CX=0

Interrupt instructions:

INT

INTO

IRET

PROCESSOR CONTROL INSTRUCTIONS

Flag set/clear instructions:

STC Set carry flag

CLC Clear carry flag
CMC Complement carry flag
STD Set direction flag
CLD Clear direction flag
STI Set interrupt flag
CLI Clear interrupt flag
External Hardware Synchronization Instructions:

HLT Halt

WAIT Wait

ESC

LOCK

No operation instruction:

NOP No operation

Dr. Saibal Kumar Pradhan, CEMK Page 19

Intel 8086/88 Microprocessor

Assembly Language Programming

¢ The sequence of commands used to tell a microprocessor what to do is called a program. The commands are
called instructions.

e Some part of it is called Monitor Program or Operating System and the other is called User Program or
Application Program.

e Operating Program basically organizes the inputs and the outputs with the system.

e User Program supplies the variables and their formats.

e Microprocessor can only understand the instructions coded in binary called machine language.

* Machine language is difficult, if not impossible, for human to handle.

e Assembly language was developed to provide mnemonics plus other features to make the programming
easy, faster and less prone to error.

¢ |nstructions abbreviated in English letters to represent the operation to be performed by the microprocessor
are called mnemonics meaning memory-aid.

* Assembly language programs must be translated into machine code by a program called assembler.

e Assembly language is referred to as a low-level language because it deals directly with the internal structure
of the microprocessor.

e High level language like C, BASIC, Java etc. can also be used for programming.

High level language is converted into machine code by a program called compiler.

Structure of Assembly Language:

e An assembly language program consists of a number of assembly language instructions used to tell the CPU
what to do.

e |t also contains instructions giving direction to the assembler called directives.

e For example, MOV, ADD instructions are commands to the CPU whereas ORG, END are directives to the
assembler. ORG followed by an address tells the assembler to place the op-code at that memory location
while END indicates the end of the source code.

e An assembly language instruction consists of five fields:

[label:] mnemonic [destination operand] [source operand] [; comment]

* Brackets indicate that a field is optional and not all lines have them. Brackets should not be typed in while
typing an instruction.

e The label field allows the program to refer to a line of code by name. There are rules for writing the label like
type and maximum number of characters, starting characters etc. which is assembler specific.

e The assembly language mnemonic together with the operands forms the command for the CPU. For
example MOV AL, BL. MOV is the mnemonic, which is the abbreviation of data movement. The operands are
supplied by AL and BL registers. The data from source register BL moves to destination register AL.

e The comment field begins with a semicolon. Comments may be at the end of a line or on a new line itself.
The assembler ignores comments, but they should be present to make the program understandable to
others and at a later time.

Assembling and running of an 8088/86 program:

¢ A machine can only understand machine language. So assembly language program is to be translated back
into machine language. Human for convenience uses assembly language.

Dr. Saibal Kumar Pradhan, CEMK Page 20

Intel 8086/88 Microprocessor

Assembly language program is time consuming and difficult, if not impossible, to translate into machine
language manually.

A PC based program called an assembler can do the same instantaneously. It takes an assembly language
program as input and produces an object file having extension .obj for machine codes.

The assembly language file can be written in any EDITOR program like DOS EDIT, WINDOWS NOTEPAD etc.
which saves the file in ASCII format having extension .asm.

Program can also be written in high level languages like ‘C’, BASIC, PASCAL. An interpreter program or a
compiler is used to translate the same into machine codes.

All the object files created by assembler or compiler can then be combined to form a single machine
language program by another program called linker.

The total flow diagram of machine language program development is depicted below.

An Assembler produces a listing file having extension .Ist containing the original assembly language
instructions and the corresponding binary codes. It also reports for any error encountered during
conversion.

EDITOR PROGRAM

test.asm

ASSEMBLER PROGRAM

test.Ist

test.obj Other obj files

LINKER PROGRAM

test.hex

Load into:
Simulator for debugging

WP Trainer KIT for checking
EPROM to run the System.

Steps to create a Program

Programs can be developed faster in high level language than assembly language as the high-level language
uses higher building blocks. However, a program written in high level language usually occupies more space
in memory and takes more time to execute than that developed by assembly language.

Programs that involve a lot of hardware-control are normally written in assembly language.

Dr. Saibal Kumar Pradhan, CEMK Page 21

Intel 8086/88 Microprocessor

Program Development Steps:

Defining the problem

The first step in writing a program is to write down the operations to be done by the program and the order of
executing them. An example of a simple problem may be:

Read temperature from thermocouple sensor

Read ambient temperature from an ambient sensor
Add correction for ambient temperature

Save result in memory

HPLbdE

For a program as simple as this, the four actions desired are very close to the assembly statements. However, for
more complex problem we need to develop more extensive outline of the problem so that the actions can be
replaced by assembly language statements.

Representing Program Operations

The formula or sequence of operations used to solve a problem is called algorithm. An algorithm can be written
using graphic shapes called flowcharts. Algorithm can also be written by pseudo codes using standard program
structures.

FLOWCHARTS
Different graphic shapes are used to represent different types of operations. The figure below shows some of
the commonly used graphic shapes:

PROCESS INPUT/ OUTPUT

SUB ROUTINE CONNECTOR OFF-PAGE CONNECTOR

TERMINATION

Figure: Flowchart symbols

Figure below shows a flowchart for a program to read 24 data samples from a thermocouple sensor at an
interval of 1 hour.

Dr. Saibal Kumar Pradhan, CEMK Page 22

Intel 8086/88 Microprocessor

START

EAD VALUE FROM SENSOR

READ VALUE FROM AMB. SENSO

ADD THE TWO

STORE THE RESULT IN MEMORY

WAIT 1 HOUR

NO

YES

PSEUDOCODES
¢ Flowchart symbols are space consuming and are normally not used for large programs. Instead English like

statements called pseudo codes are used to represent the algorithm of the program.

Dr. Saibal Kumar Pradhan, CEMK Page 23

Intel 8086/88 Microprocessor

e Three basic operations viz. Sequence, Decision, and Iteration can represent the operations of any desired
problem.

e Sequence represents a series of actions

e Decision means choosing between two alternative actions

® Repetition means repeating a series of actions for a number of time

e Three to seven standard structures can represent all the operations in a typical program

e These standard structures are:

WHILE-DO LOOP
REPEAT UNTIL

1. SIMPLE SEQUENCE

2. |IF-THEN-ELSE

3. IF-THEN

4. CASE expressed as nested IF-THEN-ELSE
5. CASE

6.

7.

Example of different cooking in different days of the week in the students’ Hostel using Flow Chart and Pseudo
Codes:

Pseudo Codes
IF MONDAY THEN

MAKE MUTTON MEAL
ELSE IF TUESDAY THEN

MAKE VEG MEAL
ELSE IF WEDNESDAY THEN

MAKE CHICKEN MEAL

ELSE IF SUNDAY THEN

MAKE SPECIAL MEAL

Flow Chart:

Dr. Saibal Kumar Pradhan, CEMK Page 24

Intel 8086/88 Microprocessor

MUTTON MEA

(

CHICKEN MEAL

Dr. Saibal Kumar Pradhan, CEMK

SPECIAL MEAL

Page 25

Intel 8086/88 Microprocessor

Programming Examples:
Examples-1: Flow Chart for transferring block of bytes data from one area of

memory to another
START

Initialize COUNT & POINTERS

Transfer a Byte

Adjust POINTERS

Decrement COUNT

NO

YES

END

;8086 Program to transfer a number of bytes from one place to another
;in memory. Let us also consider that code segment is in 8000H and
;data segment is at 2000H

ORG 8000:100H

START: MOV AX, 2000H
MOV DS, AX
MOV SI, SOUR ; SOURCE MEMORY POINTER
MOV DI, DEST ; DESTINATION MEMORY POINTER

MOV CX, COUNT ; STRING ELEMENT COUNTER

RPT: MOV AL, [STI] ;MOVE SOURCE ELEMENT INTO AL REG
MOV [DI], AL ; STORE AL IN DESTINATION
INC ST ; SOURCE MEM POINTER INCREMENTED
INC DI ; DESTINATION MEM POINTER INCREMENTED
LOOP RPT

Dr. Saibal Kumar Pradhan, CEMK Page 26

Intel 8086/88 Microprocessor

STAY: JMP STAY

COUNT: EQU 100D

SOUR: EQU 100H

DEST: EQU 200H
END

Note:

In case of word (l6-bit) data transfer, word data transfer occurs through a
16-bit register and memory pointers will be incremented by two instead of
one as shown below:

ORG 8000:100H

START: MOV AX, 2000H
MOV DS, AX
MOV SI, SOUR ; SOURCE MEMORY POINTER
MOV DI, DEST ; DESTINATION MEMORY POINTER

MOV CX, COUNT ; STRING ELEMENT COUNTER

RPT: MOV AX, [SI] ;MOVE SOURCE ELEMENT INTO AX REG
MOV [DI], AX ; STORE AX IN DESTINATION
ADD SI, 02H ; SOURCE MEM POINTER INCREMENTED BY TWO
ADD DI, O02H ;DEST MEM POINTER INCREMENTED BY TWO
LOOP RPT

STAY: JMP STAY

COUNT: EQU 100D

SOUR: EQU 100H

DEST: EQU 200H
END

Dr. Saibal Kumar Pradhan, CEMK Page 27

Intel 8086/88 Microprocessor

Examples-2: Exchange of two blocks of byte data

START

Initialize COUNT & POINTERS

Exchange bytes

Adjust POINTERS

Decrement COUNT

NO

YES
END

Flow Chart for exchanging two blocks of byte data from one area of memory
with another

ORG 8000:100H
START: MOV AX, 2000H
MOV DS, AX

MOV SI, SOUR ; SOURCE MEMORY POINTER
MOV DI, DEST ;DESTINATION MEMORY POINTER
MOV CX, COUNT ; STRING ELEMENT COUNTER

RPT: MOV AL, [STI] ;
XCHG [DI], AL ; EXCHANGE SOU DATA WITH DEST DATA
MOV [SI], AL ;
INC ST ; SOURCE MEM POINTER INCREMENTED BY TWO
INC DI ;DEST MEM POINTER INCREMENTED BY TWO
LOOP RPT

STAY: JMP STAY

Dr. Saibal Kumar Pradhan, CEMK Page 28

Intel 8086/88 Microprocessor

COUNT: EQU 100D

SOUR: EQU 100H

DEST: EQU 200H
END

Example-3: Flow Chart of a program that adds two 4-digit BCD numbers stored
in memory. Store the result also in memory.

Preamble: Let us consider that BCD numbers are stored in memory as packed
BCD i.e. stored as two digits per byte and they will be added two-digits at
a time in AL register as Decimal adjustment after addition takes place in AL
only.

START

Initialize POINTERS

Increment POINTERS

AL = HB of OP1

AL = LB of OP1

ADC HB of OP2 with AL

ADD LB of OP2 with ACC

Adjust] ACC for Decimal addition

Adjust ACC for Decimal addition

Store the HB of result

Store the LB of result

END

Dr. Saibal Kumar Pradhan, CEMK Page 29

Intel 8086/88 Microprocessor

ADD TWO 4-DIGIT BCD NUMBERS STORED IN MEMORY.
ALSO STORE THE RESULT IN MEMORY

DATAL:
DATAZ:

RESULT:

ADDBCD:

STAY:

Dr. Saibal Kumar Pradhan, CEMK

8:18 PM 8/19/2004 WRITTEN BY SATIBAL PRADHAN

ORG 8000:100H

EQU 500H
EQU 502H
EQU 504H

MOV SI, DATAl

MOV AX, [SI]
MOV BX, [SI]O02H
ADD AL, BL

DAA

XCHG AL, AH

ADC AL, BH

DAA

XCHG AL, AH
MOV [SI]O04H, AX

JMP STAY

;OP1 IN MEMORY 500-501H
;OP2 IN MEMORY 502-503H
;RESULT IN MEM 504-506H

;MEMORY POINTER TO PICK UP OP1l, OP2 AND TO
; STORE RESULT

; LOAD OP1 IN AX
; LOAD OP2 IN BX

; LOWER TWO DIGITS ARE ADDED
;ADJUST FOR BCD ADDTION

; HIGHER TWO DIGITS ARE ADDED TAKING CARE OF
; PREVIOUS CARRY, IF ANY

;STORE THE 1ST TWO DIGITS OF THE RESULT

Page 30

Intel 8086/88 Microprocessor

More Examples:

Ex-4: Add two 64-bit data stored in memory and also store the result in memory.

Solution: Two 64-bit data cannot be added at a time. As 8086/88 can add either two 8-bit or two 16-bit data, we
have to add multi-byte data either byte-wise or word-wise.

Flow Chart:
START

N

Initialize Data Segment
Initialize Data Pointers for Op-1, Op-2 & Result
Initialize Counter

.

A

Read Op-1 byte/word in a Register
Add Op-2 corresponding byte/word with Op-1
Store partial result in memory

}

Increment Pointers
Decrement Counter

NO

YES

STOP

; TO ADD TWO 64-BIT DATA RESIDING IN MEMORY. RESULT IS ALSO STORED
; IN MEMORY.
; 9:45 PM 29/01/2015 WRITTEN BY DR. SAIBAL KUMAR PRADHAN

.ORG 2000:100H
; INITIALTIZATION OF POINTERS AND COUNTER
MOV AX, 1000H

MOV DS, AX ; DATA SEGMENT STARTS AT 10000H
MOV SI, 100H ; OP-1 POINTER

MOV BX, 110H ; OP-2 POINTER

MOV DI, 120H ; RESULT POINTER

Dr. Saibal Kumar Pradhan, CEMK Page 31

Intel 8086/88 Microprocessor

MOV CX, 04H ; 64-BIT DATA WILL BE ADDED WORD-WISE
CLC ; CLEAR CARRY FLAG

; ADDING CORRESPONDING WORDS OF OP-1 & OP-2

AGAIN: MOV AX, [SI]

ADC AX, [BX]
MOV [DI], AX

; PROCESSING OF POINTERS & COUNTER
INC ST
INC ST
INC BX
INC BX
INC DI
INC DI

LOOP AGAIN

; STORING THE FINAL CARRY
MOV AL, 00
ADC AL, 00
MOV [DI], AL
STOP: JMP STOP

Ex-5: Add one hundred bytes stored in memory. Justify the length of the result and also store it in memory.
Solution: One hundred bytes can be added with 99 ADD instructions and in worst case all the ADD instructions
may generate carries which when added can give 99D. This can easily be stored in a byte and so the result will
be a 16-bit data.

.ORG 2000:100H
START : MOV AX, 1000H

MOV DS, AX

MOV SI, 100H

MOV CX, 100D ; DATA COUNT
XOR AH, AH ; TAKE CARE CARRY, IF ANY
XOR AL, AL ; INITIAL SUM = 0
REPEAT: ADD AL, [SI]
JNC SKIP
INC AH
SKIP: INC ST

LOOP REPEAT
MOV DS:200H, AX ; STORE RESULT
STOP: JMP STOP

Dr. Saibal Kumar Pradhan, CEMK Page 32

Intel 8086/88 Microprocessor

Ex-6: Find the N term and sum of N terms of an Arithmetic Progression whose first term and common

difference are stored in 1000:100H and 1000:101H locations respectively. Store Ty and Sy in suitable memory.

Solution: For an AP, we know that
Tv=a+(N-1).d
and, Sy = (N/2).[(2a+(N-1).d]

Let us consider a, d and N are supplied through memory locations 1000:100H, 101H and 102H respectively. Ty
and Sy are considered to be word and double word data respectively and will be stored at 103H and 105H

respectively.

.ORG 2000:200H
START: MOV AX, 1000H
MOV DS, AX

; CALCULATION OF T,
MOV AL, DS:100H
CBW
MOV CX, AX
MOV BL, DS:101H
MOV AL, DS:102H
DEC AL
IMUL BL
ADD AX, CX
MOV DS:103H, AX

; CALCULATION OF Sy

ADD AX, CX

MOV BL, DS:102H
SHR BL,1

XCHG AX, BX

CBW

IMUL BX

MOV DS:105H, AX
MOV DS:107H, DX
STOP: JMP STOP

Dr. Saibal Kumar Pradhan, CEMK

Al=a (8-BIT FORMAT)

CX=a (16-BIT FORMAT)
BL=d

AL=N

AL=N-1

AX=(N-1) .d
AX=a+(N-1).d =Ty

STORE TN

AX=a+(N-1).d +a=2a+(N-1).d

BL=N

BL=N/2
DX-AX=(N/2) .[(2a+(N-1) .d]=Sy
STORE Sy

Page 33

Intel 8086/88 Microprocessor

Pin Diagram of 8086/88

MAX MIN

MODE MODE
Ves (GND) O a0 Vee (5P

AD14 O 2 38 O AD15
AD13 O3 38 [0 A16/53
AD12 4 37 O A17/s4
AD11 5 36 [0 A18/S5
AD10 s 35[0 A19/S6
ADS O7 34 0 BAE/ST
ADE 8 232 0 MNE
AD7 O9 320 RD
ADs Cj10 @ 31 RQBTO HOLD
ADs Q11 Q 30 RQ/GTT HLDA
AD4 12 20 O TOCK WR

AD2 13 280 52 MAO

AD2 [14 27 51 DTR

AD1 15 260 S0 DEN

ADD []16 25 Qso ALE

MMl 17 24 0 Qs1 TNTA

INTR []18 23 TEST

CLK O19 22 0 READY
Vss (GND) []20 21 [0 RESET

ADO - AD15 (I/O): Address Data Bus

These lines constitute the time multiplexed memory/IO address during the first clock cycle (T1) and
data during T2, T3 and T4 clock cycles. A0 is analogous to BHE’ for the lower byte of the data bus,
pins DO-D7. AO bit is Low during T1 state when a byte is to be transferred on the lower portion of
the bus in memory or I/O operations. 8-bit oriented devices tied to the lower half would normally
use A0 to condition chip select functions. These lines are active high and float to tri-state during
interrupt acknowledge and local bus "Hold acknowledge".

A19/S6, A18/S5, A17/S4, A16/S3 (0): Address/Status

During T1 state these lines are the four most significant address lines for memory operations.
During 1/0O operations these lines are low. During memory and I/O operations, status information is
available on these lines during T2, T3, and T4 states.

S6:

When Low, it indicates that 8086 is in control of the bus. During a "Hold acknowledge" machine
cycle, the 8086 tri-states the S6 pin and thus allows another bus master to take control of the bus.
S5:

The status of the interrupt enable flag bit is updated at the beginning of each cycle. The status
of the flag is indicated through this bit.

Dr. Saibal Kumar Pradhan, CEMK Page 34

Intel 8086/88 Microprocessor

5S4 & S3:

Lines are decoded as follows:

S4 S3 Function

0 0 Extra segment access
0 1 Stack segment access
1 0 Code segment access
1 1 Data segment access

After the first clock cycle of an instruction execution, the A17/S4 and A16/S3 pins specify which
segment register generates the segment portion of the 8086 address. Thus by decoding these lines
and using the decoder outputs as chip selects for memory chips, up to 4 Megabytes (one Mega per
segment) of memory can be accesses. This feature also provides a degree of protection by
preventing write operations to one segment from erroneously overlapping into another segment
and destroying information in that segment.

BHE /S7 (O): Bus High Enable/Status

During T1 state the BHE should be used to enable data onto the most significant half of the data
bus, pins D15 - D8. Eight-bit oriented devices tied to the upper half of the bus would normally use
BHE to control chip select functions. BHE is Low during T1 state of read, write and interrupt
acknowledge cycles when a byte is to be transferred on the high portion of the bus.

The S7 status information is available during T2, T3 and T4 states. The signal is active Low and
floats to tri-state during "hold" state. This pin is Low during T1 state for the first interrupt
acknowledge cycle.

RD (O): READ

The Read strobe indicates that the processor is performing a memory or 1/O read cycle. This signal
is active low during T2 and T3 states and the Tw states of any read cycle. This signal floats to tri-
state in "hold acknowledge cycle".

TEST (1)

TEST pin is examined by the "WAIT" instruction. If the TEST pin is Low, execution continues.
Otherwise, the processor waits in an "idle" state. This input is synchronized internally during each
clock cycle on the leading edge of CLK.

INTR (I): Interrupt Request

It is a level triggered input which is sampled during the last clock cycle of each instruction to
determine if the processor should enter into an interrupt acknowledge operation. A subroutine is
vectored to via an interrupt vector look up table located in system memory. It can be internally
masked by software resetting the interrupt enable bit INTR is internally synchronized. This signal is
active HIGH.

NMI (1): Non-Muskable Interrupt

An edge triggered input, causes a type-2 interrupt. A subroutine is vectored to via the interrupt
vector look up table located in system memory. NMI is not maskable internally by software. A

Dr. Saibal Kumar Pradhan, CEMK Page 35

Intel 8086/88 Microprocessor

transition from a LOW to HIGH on this pin initiates the interrupt at the end of the current
instruction. This input is internally synchronized.

Reset (I)

Reset causes the processor to immediately terminate its present activity. To be recognized, the
signal must be active high for at least four clock cycles, except after power-on which requires a 50
Micro Sec. pulse. It causes the 8086 to initialize registers DS, SS, ES, IP and flags to all zeros. It also
initializes CS to FFFF H. Upon removal of the RESET signal from the RESET pin, the 8086 will fetch
its next instruction from the 20 bit physical address FFFFOH. The reset signal to 8086 can be
generated by the 8284. (Clock generation chip). To guarantee reset from power-up, the reset input
must remain below 1.5 volts for 50 Micro sec. after Vcc has reached the minimum supply voltage of
4.5V.

Ready (I)

Ready is the acknowledgement from the addressed memory or I/O device that it will complete the
data transfer. The READY signal from memory or I/O is synchronized by the 8284 clock generator to
form READY. This signal is active HIGH. The 8086 READY input is not synchronized. Correct
operation is not guaranteed if the setup and hold times are not met.

CLK (I): Clock

Clock provides the basic timing for the processor and bus controller. It is asymmetric with 33% duty
cycle to provide optimized internal timing. Minimum frequency of 2 MHz is required, since the
design of 8086 processors incorporates dynamic cells. The maximum clock frequencies of the 8086-
4, 8086 and 8086-2 are 4MHz, 5MHz and 8MHz respectively.

Since the 8086 does not have on-chip clock generation circuitry, and 8284 clock generator chip
must be connected to the 8086 clock pin. The crystal connected to 8284 must have a frequency 3
times the 8086 internal frequency. The 8284 clock generation chip is used to generate READY,
RESET and CLK.

MN/MX (I): Maximum / Minimum

This pin indicates what mode the processor is to operate in. In minimum mode, the 8086 itself
generates all bus control signals. In maximum mode the three status signals are to be decoded to
generate all the bus control signals.

Minimum Mode Pins The following 8 pins function descriptions are for the 8086 in minimum mode;
MN/ MX = 1. The corresponding 8 pins function descriptions for maximum mode is explained later.

M/1O (O): Status line

This pin is used to distinguish a memory access or an I/O accesses. When this pin is Low, it
accesses I/0O and when high it access memory. M / 10 becomes valid in the T4 state preceding a bus
cycle and remains valid until the final T4 of the cycle. M/IO floats to 3 - state OFF during local bus
"hold acknowledge".

WR (O): Write

Indicates that the processor is performing a write memory or write 10 cycle, depending on the state
of the M /IOsignal. WR is active for T2, T3 and Tw of any write cycle. It is active LOW, and floats to
3-state OFF during local bus "hold acknowledge ".

Dr. Saibal Kumar Pradhan, CEMK Page 36

Intel 8086/88 Microprocessor

INTA (O): Interrupt Acknowledge

It is used as a read strobe for interrupt acknowledge cycles. It is active LOW during T2, T3, and T4
of each interrupt acknowledge cycle.

DT/ R (O): DATA Transmit/Receive

In minimum mode, 8286/8287 transceiver is used for the data bus. DT/ R is used to control the
direction of data flow through the transceiver. This signal floats to tri-state off during local bus "hold
acknowledge".

DEN (O): Data Enable

It is provided as an output enable for the 8286/8287 in a minimum system which uses the
transceiver. DEN is active LOW during each memory and IO access. It will be low beginning with T2
until the middle of T4, while for a write cycle, it is active from the beginning of T2 until the middle
of T4. It floats to tri-state off during local bus "hold acknowledge".

HOLD & HLDA (1/0): Hold and Hold Acknowledge

Hold indicates that another master is requesting a local bus "HOLD". To be acknowledged, HOLD
must be active HIGH. The processor receiving the "HOLD " request will issue HLDA (HIGH) as an
acknowledgement in the middle of the T1-clock cycle. Simultaneous with the issue of HLDA, the
processor will float the local bus and control lines. After "HOLD" is detected as being Low, the
processor will lower the HLDA and when the processor needs to run another cycle, it will again drive
the local bus and control lines.

Maximum Mode:

The following pins function descriptions are for the 8086/8088 systems in maximum mode (i.e..
MN/MX = 0). Only the pins which are unique to maximum mode are described below.

S2, S1, SO (O): Status Pins

These pins are active during T4, T1 and T2 states and is returned to passive state (1,1,1 during T3
or Tw (when ready is inactive). These are used by the 8288 bus controller to generate all memory
and 1I/O operation) access control signals. Any change by S2, S1, SO during T4 is used to indicate
the beginning of a bus cycle. These status lines are encoded as shown in table 3.

S2 S1 SO Characteristics

0 0 0 Interrupt acknowledge
0 0 1 Read 1/O port

0 1 0 Write 1/O port

0 1 1 Halt

1 0 0 Code access

1 0 1 Read Memory

1 1 0 Write memory

1 1 1 Passive State

Dr. Saibal Kumar Pradhan, CEMK Page 37

Intel 8086/88 Microprocessor

QSO0, QS1 (O): Queue - Status

Queue Status is valid during the clock cycle after which the queue operation is performed. QSO,
QS1 provide status to allow external tracking of the internal 8086 instruction queue. The condition
of queue status is shown in table 4.

Queue status allows external devices like In-circuit Emulators or special instruction set extension
co-processors to track the CPU instruction execution. Since instructions are executed from the 8086
internal queue, the queue status is presented each CPU clock cycle and is not related to the bus
cycle activity. This mechanism allows (1) A processor to detect execution of a ESCAPE instruction
which directs the co- processor to perform a specific task and (2) An in-circuit Emulator to trap
execution of a specific memory location.

QS1 QSs1 Characteristics

0 0 No operation

0 1 First byte of opcode from queue
1 0 Empty the queue

1 1 Subsequent byte from queue
LOCK (O)

It indicates to another system bus master, not to gain control of the system bus while LOCK is
active Low. The LOCK signal is activated by the "LOCK" prefix instruction and remains active until
the completion of the instruction. This signal is active Low and floats to tri-state OFF during 'hold
acknowledge'. Example:

LOCK XCHG reg., Memory ; Register is any register and memory GTO
; 1s the address of the semaphore.

RQ/GTO and RQ/GT1 (I/O): Request/Grant

These pins are used by other processors in a multi processor organization. Local bus masters of
other processors force the processor to release the local bus at the end of the processors current
bus cycle. Each pin is bi-directional and has an internal pull up resistors. Hence they may be left un-
connected.

Dr. Saibal Kumar Pradhan, CEMK Page 38

Intel 8086/88 Microprocessor

AgA\dSS, X _Eohr X : 56
: I Float : I FloaI

AD,s-ADg "X AD Al > Dam B >
_— Bty I I | I
M/ 10 X ' ' ' X
ALE ¥, \ I I :
| | | | |

DUR T\ | ' —
— + + | | +
RD I I \ l L I
DEN . . \ | : .
| | rl—-\ | |
READY | | | | |

Bus Timing for a Read Operation

Dr. Saibal Kumar Pradhan, CEMK Page 39

Intel 8086/88 Microprocessor

One Bus Cyele

Dr. Saibal Kumar Pradhan, CEMK

Page 40

Intel 8086/88 Microprocessor

Clock Generator

5 MH:z
CLK

X, CLK .
14 HH;@
X RO

FiC
‘;[R2H44 Ll
+ 5V CSYMNC

Y

RESET ={ RESET
0K
- HES
=== |0uF
=
- 1}
Sysiem
reset

FIGURE 8-4 The clock generator (B284A) and the 80B6 and BOSE microprocessar llustratrg
the connection for the clock and reset signals. A 15 MHz crystal pravides the 5 MHz clock for
the microprocassor.

Dr. Saibal Kumar Pradhan, CEMK Page 41

Intel 8086/88 Microprocessor

Dr. Saibal Kumar Pradhan, CEMK Page 42

8051 Microcontroller

The 8051 is an 8 bit microcontroller originally developed by Intel in 1980. It is the world's most
popular microcontroller core, made by many independent manufacturers (truly multi-sourced).
There were 126 million 8051s (and variants) shipped in 1993!!

A typical 8051 contains:

- CPU with boolean processor

- 5 or 6 interrupts: 2 are external, 2 priority levels

- 2 or 3 16-bit timer/counters

- programmable full-duplex serial port (baud rate provided by one of the timers)

- 32 I/O lines (four 8-bit ports)

- RAM

- ROM/EPROM in some models
The 8051 instruction set is optimized for the one-bit operations so often desired in real-world,
real-time control applications. = The boolean processor provides direct support for bit
manipulation. This leads to more efficient programs that need to-deal with binary input and
output conditions inherent in digital-control problems. Bit addressing can be used for test pin
monitoring or program control flags.
8051 Flavors

The 8051 has the widest range of variants of any embedded controller on the market.
The smallest device is the Atmel 89¢1051, a 20.Pin FLASH variant with 2 timers, UART, 20mA.
The fastest parts are from Dallas, with performance close to 10 MIPS! The most powerful chip
is the Siemens 80C517A, with 32 Bit ALU,.2 UARTS, 2K RAM, PLCC84 package, 8 x 16 Bit
PWDMs, and other features.

Among the major manufacturers are:
AMD Enhanced 8051 parts (no longer producing 80x51 parts)
Atmel FLASH and sémi-custom parts
Dallas Battery backed, program download, and fastest variants
Intel 8051 through 80c51gb / 80c51sl
ISSI IS80C51/31 runs up to 40MHz
Matra 80c]54, low voltage static variants
OKI 80c154, mask parts

Philips.-87c748 thru 89¢588 - more variants than anyone else
Siemens “80c501 through 80c517a, and SIECO cores

SMC — COM20051 with ARCNET token bus network engine
SSI- 80x52, 2 x HDLC variant for MODEM use

Internal Architecture of 8051:

The registers and memory map is very important to develop assembly language program. 8051 has 128
bytes RAM in the address range 00 — 7FH. It has also some special function registers (SFRs) like A, B, PSW, DPH,
DPL, SP etc. These registers are also having some addresses in the range between 80H — FFH. Some of the variants
of 8051 family like 8052 has 256 bytes of internal RAM. So apparently, the SFRs and the higher 128 bytes RAM
overlap each other. This is taken care of by using different addressing modes for different space.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 1

8-bit Registers supporting register addressing mode are:

16-bit register supporting register addressing is DPTR

A

RO

R1

R2

R2

R3

R4

R5

R6

R7

Other important registers not referred by their names but by their addresses are listed in the given table below:

Special Function Registers and their addresses:

SL | Symbol Name Addr | Bit Address
1 A* Accumulator EOH E7 | E6 | E5 E4 E3 E2 | E1 | EO
2 B* B register FOH F7 | F6 | F5 F4 F3 F2 F1 | FO
3 PSW* Program Status Word DOH D7 | D6 |D5 | D4 | D3 | D2 | D1 | DO
4 SP Stack Pointer 81H
5 DPTR Data Pointer (16-bit)
6 DPL DPTR Low Byte 82H
7 DPH DPTR-High Byte 83H
8 PO* Port O 80H 87 |86 |85 |84 |83 |82 |81 |80
9 P1* Port 1 90H 97 | 96 | 95 94 93 [92 |91 | 90
10 p2* Port 2 AOH A7 | A6 | A5 | A4 | A3 | A2 | A1 | AO
11 pP3* Port 3 BOH B7 | B6 |B5 | B4 | B3 | B2 | B1 | BO
12 | IP* Interrupt Priority Control B8H BF | BE | BD | BC | BB | BA | B9 | B8
13 (| IE* Interrupt Enable Control A8H AF | AE | AD | AC | AB | AA | A9 | A8
14 | TMOD Timer/Counter Mode Control 89H
15 ./ TCON* Timer/Counter Control 88H 8F | 8E | 8D | 8C | 8B |8A |89 |88
16 | T2CON* Timer/Counter 2 Control C8H CF |[CE |CD |[CC |[CB |CA |C9 |C8
17 | T2MOD Timer/Counter Mode Control C9H
18 | THO Timer/Counter 0 High Byte 8CH
19 | TLO Timer/Counter O Low Byte 8AH
20 | TH1 Timer/Counter 1 High Byte 8DH
21 | TL1 Timer/Counter 1 Low Byte 8BH
22 | TH2 Timer/Counter 2 High Byte CDH
23 | TL2 Timer/Counter 2 Low Byte CCH

Prof. (Dr.) Saibal Pradhan, CEMK Page -2

24 | RCAP2H T/C 2 Capture Reg. High Byte CBH
25 | RCAP2L T/C 2 Capture Register Low Byte CAH
26 | SCON* Serial Control 98H | 9F [9E | 9D [9c [9B [9A |99 |98
27 | SBUF Serial Data Buffer 99H
28 | PCON Power Control. 87H

Register Bank Selection Through PSW.4 and PSW.3

cy AC FO RS1 | RSO | oV - P
RS1 RSO Register Bank Address
0 0 Bank 0 00H - 07H
0 1 Bank 1 08H — OFH
1 0 Bank 2 10H-17H
1 1 Bank 3 18H - IFH

The 8051 can address 64KB program memory as well as 64KB data memory. Out of 64KB total program
memory, some are on-chip. Different variants of 8051 have different amounts of on-chip program memory. For
instance, 8051 has 4KB on-chip ROM. External Program and data me¢mory (ROM and RAM both) can be interfaced
further to cater the need of the system.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 3

The register and memory map is shown in figure below:

80 - FFH

30 - 7FH

2FH
2EH
2DH
2CH
2BH
2AH
29H
28H
27H
26H
25H
24H
23H
22H
21H
20H
18 - 1FH
10 - 17H
08 - OFH
00 - 07H

SFR
(Direct addressing)

Upper 128 Byte
RAM
in some Variants
like 8052
(Register Indirect
Addressing only,
@ro0, r1)

Byte addressable scratch pad memory.

Direct and
Register
Indirect
addressable

7JF | 7E | 7D | 7C

7B | 7A |79 | 78

77 |76 |75 | 74

73 |72 |71 |70

6F | 6E | 6D | 6C

6B | 6A | 69 | 68

67 | 66 | 65 | 64

63 | 62 | 61 | 60

5F | 5E | 5D | 5C

5B | 5A | 59 | 58

57 | 56 | 55 | 54

53 | 52 | 51 | 50

4F | 4E | 4D | 4C

4B | 4A | 49 | 48

47 | 46 | 45 | 44

43 |42 | 41 | 40

3F | 3E | 3D | 3C

3B | 3A | 39 |38

37 136 |35 | 34

33 [32 |31 [30

2F | 2E | 2D | 2C

2B | 2A |29 | 28

27 |26 |25 | 24

23)220 21 | 20

1F | 1E | 1D | 1C

1IB/NIAT| 19 | 18

17 116 | 15 | 14

13,112 | 11 | 10

OF | OE | OD | OC

OB | OA | 09 | 08

07 | 06 | 05 |(04

03 |02 | 01 | OO

Bit
addressable
Area.

(The hex
numbers in
the adjacent
cells are the
addresses of
128-bit
memory)

Register Bank # 3 and Stack

Register Bank# 2 and Stack

Register:Bank # 1 and Stack

Register Bank # 0 (RO - R7)

Direct,

Register and
Reg. indirect
addressable

Off-Chip Code Area.

Total Code space - 64KB."Address Range: O-FFFFH.

(Indexed addressing for data access)

On-Chip Code Area.

(Indexed addressing for data access)

64 KB External Data Area. Address Range: O-FFFFH.

(Register Indirect for first 256 bytes and Indexed addressing for data access)

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 4

Assembly Language Programming

8051 Registers Structure
Registers are mostly 8-bits viz. A, B, PSW, DPL, DPH, R0-R7, SP etc. DPTR is a 16-bit register composed of DPH
and DPL.

Addressing Modes supported by 8051:
1. Immediate

2. Register Direct

3. Direct

4. Register Indirect and
5. Indexed

General Format of Assembly Language Instruction
Lebel: Mnemonic ; Comments

Here: MOV Destination, Source ; This is the format of MOV command
Immediate Addressing:

This addressing mode is used when a constant data to be loaded in a destination operand like internal RAM/
External Data RAM/ Internal Registers etc. “#” sign is used to represent.a Constant/immediate data

MOV A, #12H ; Place a value 12H in Accumulator
MOV B, #55 ; Place 55 in B Register
MOV 12H, #78H ; Place 78H in internal RAM at'address 12H

MOV DPTR, #1234H ; Place 1234H in DPTRRegister

Register Direct Addressing:
This mode is used when registers are used to hold the data to be manipulated.
MOV A, Rn ; where nis 00— 7

Direct Addressing:

The amount of internal RAM in 8051/is4128 bytes having address range 00H — 7FH. This entire RAM can be
accessed by mentioning their addressesidirectly in the instructions. However, this addressing mode is normally used
for address range 30H — 7FH. RAM locations 00H — 1FH are assigned to Register banks and stack. Stack uses direct
addressing; however, register banks'can also be addressed by their names. RAM locations 20H — 2FH, 16 bytes are
bit addressable area. These memory locations are used to save bit information and can be set or reset using SETB or
CLR instructions respectively. These 128 Bit addressable memories have address range 00H — 7FH.

MOV 70H, #12H
MOV A, 70H
MOV R6, 56H

Register Indirect Addressing:
In-this addressing mode, memory addresses are supplied indirectly through RO and R1. This mode is supported by
internal RAM and first 256 bytes in external data memory.

MOV A, @Ri ;1=0and 1 only
MOV A, @r0

MOV @rl, A

MOV 12H, @rl

MOVX A, @rl

MOVX @r0, A

Indexed Addressing:

Prof. (Dr.) Saibal Pradhan, CEMK Page - 5

While accessing data from code and external data areas, the memory addresses are supplied through a 16-bit

register DPTR. This mode is very useful in accessing look up table stored in code memory.

MOVC A, @A+DPTR
MOVX A, @DPTR
MOVX @DPTR, A

8051 Instruction Set Summary

SL Mnemonic Operands Description Byte T Flags affected
States | ¢ | oV | AC
A. Data Transfer Group
1 MOV A, R, Move register to Acc 1 12
2 MOV A, direct Move direct byte to Acc 2 12
3 MOV A, @R; Move indirect to Acc 1 12
4 MOV A, #data 8 Move immediate data to Acc 2 12
5 MOV R., A Move Acc to register 1 12
6 MOV R., direct Move direct byte to register 2 24
7 MOV R, #data 8 Move immediate data to register 2 12
8 MOV direct, A Move Acc to.direct byte 2 12
9 MOV direct, R, Move register to direct byte 2 24
10 MOV direct, direct Move direct to direct in internal RAM 3 24
11 MOV direct, @R; Move indirect RAM to direct byte 2 24
12 MOV direct, # data’8 | Move immediate data to direct byte 3 24
13 MOV @R, A Move Acc to indirect RAM 1 12
14 MOV @R, direct Move direct byte to indirect RAM 2 24
15 MOV @R;, # data 8 Move immediate data to indirect RAM 2 12
16 MOV DPTR, # data 16 | Load data pointer with 16 bit constant 3 24
17 MOVC A, @A+DPTR Move code byte relative to DPTR to Acc 1 24
18 MOVC A, @A+PC Move code byte relative to PC to Acc 1 24
19 MOVX A, @R Move external RAM (8-bit addr) data to Acc 1 24
20 MOVX A, @DPTR Move external RAM (16-bit addr) data to Acc 1 24
21 MOVX @R;, A Move Acc to external RAM 1 24
Prof. (Dr.) Saibal Pradhan, CEMK Page - 6

22 MOVX @DPTR, A 24
23 PUSH direct Push direct byte onto Stack 24
24 POP direct Pop direct byte from Stack 24
25 XCH AR, Exchange Acc with register 12
26 XCH A, direct Exchange Acc with direct 12
27 XCH A, @R; Exchange Acc with indirect 12
28 XCHD A, @R; Exchange low order digit indirect with Acc 12
B. Arithmetic Operations
30 ADD A R, Add register to Acc 12 X
31 ADD A, direct Add direct to Acc 12 X
32 ADD A, @R; Add indirect to Acc 12 X
33 ADD A, #data 8 Add immediate data to Acc 12 X
34 ADC AR, Add with Carry reg to Acc 12 X
35 ADC A, direct Add with Carry direct to Acc 12 X
36 ADC A, @R; Add with Carry indirect to Acc 12 X
37 ADC A, #data 8 Add with'Carry immediate to Acc 12 X
38 SUBB AR, Subwith borrow reg from Acc 12 X
39 SUBB A, direct Sub with borrow direct from Acc 12 X
40 SUBB A, @R; Sub with borrow indirect from Acc 12 X
41 SUBB A, # data 8 Sub with borrow immediate from Acc 12 X
42 INC A Increment Acc by one 12
43 INC R, Increment Reg by one 12
44 INC direct Increment direct by one 12
45 INC @Ry Increment indirect by one 12
46 INC @R, 12
47 DEC A Decrement Acc by one 12
48 DEC R, Decrement reg by one 12
49 DEC direct Decrement direct by one 12
Prof. (Dr.) Saibal Pradhan, CEMK Page - 7

50 DEC @R; Decrement indirect by one 12

51 INC DPTR Increment data pointer by one 24

52 MUL AB Multiply A & B, Result in BA 48 0

53 DIV AB Divide Aby B, A 48 0

54 DA A Decimal adjust Acc 12 X
C. Logical Operations

55 ANL AR, AND register to Acc 12

56 ANL A, direct AND direct byte to Acc 12

57 ANL A @R, AND indirect RAM to Acc 12

58 ANL A, #data 8 AND immediate data to Acc 12

59 ANL direct, A AND Acc to direct byte 12

60 ANL direct, # data 8 | AND immediate data to direct byte 24

61 ORL AR, OR reg to Acc 12

62 ORL A, direct OR direct to Acc 12

63 ORL A, @R; OR indirect torAce 12

64 ORL A, #data 8 OR immediate data to Acc 12

65 ORL direct, A ORAcc to direct 12

66 ORL direct, # data 8+, [yOR immediate data to Direct 24

67 XRL AR, Ex-OR reg to Acc 12

68 XRL A, direct Ex-OR direct to Acc 12

69 XRL A/ @R; Ex-OR indirect to Acc 12

70 XRL A, #data 8 Ex-OR immediate data to Acc 12

71 XRL direct, A Ex-OR Acc to direct 12

72 XRL direct, # data 8 | Ex-OR immediate data to Direct 24

73 CLR A Clear Acc 12

74 CPL A Compliment Acc 12

75 RL A Rotate Acc left 12

76 RLC A Rotate Acc left through carry 12 X
Prof. (Dr.) Saibal Pradhan, CEMK Page - 8

77 RR A Rotate Acc right 12

78 RRC A Rotate Acc right through carry 12 X
79 SWAP A Swap nibbles within Acc 12
D. Boolean Variable Manipulation

80 CLR C Clear carry flag 12 0
81 CLR bit Clear direct bit 12

82 SETB C Set carry 12 1
83 SETB bit Set direct bit 12

84 CPL C Complement carry 12 X
85 CPL bit Complement direct bit 12

86 ANL C, bit AND direct bit to carry 24 X
87 ANL C, /bit AND complement of directbit to carry 24 X
88 ORL C, bit OR bit to Carry Flag 24 X
89 ORL C, /bit OR complement ofbit to Carry Flag 24 X
90 MOV C, bit Move directbit to carry 12 X
91 MOV bit, C Move carry to direct bit 24

92 IC rel Jump if carry is set 24

93 INC rel Jump if carry is not set 24

94 JB bit, rel Jump if bit is set 24

95 IJNB bityrel Jump if bit is not set 24

96 JBC bit, rel Jump if direct bit set and clear bit 24
E. Program Branching

97 ACALL addr 11 Absolute subroutine call 24

98 LCALL addr 16 Long Subroutine call 24

99 RET Return from subroutine 24

100 RETI Return from interrupt subroutine 24

101 AJMP addr 11 Absolute jump 24

102 LIMP addr 16 Long jump 24
Prof. (Dr.) Saibal Pradhan, CEMK Page - 9

103 SIMP rel Short jump (relative addr) 24
104 JMP @A+DPTR Jump indirect relative to DPTR 24
105 JZ rel Jump if Acc is zero 24
106 INZ rel Jump if Acc is not zero 24
107 CINE A, direct, rel Compare direct with Acc and jump if not equal 24 X
108 CINE A, # data 8, rel Compare data with Acc and jump if not equal 24 X
109 CINE R., # data 8, rel | Compare data with reg and jump if not equal 24 X
110 CINE r@EIRi, # data 8, gglrgloare data with indirect and jump if not 24 «
111 DJNZ R,, rel Decrement reg by one and jump if not zero 24
112 DJNZ direct, rel Decrement direct by one and jump if not zero 24
113 NOP No operation No operation 12
Prof. (Dr.) Saibal Pradhan, CEMK Page - 10

Program examples

1. Write an 8051 Assembly Language Program to transfer a number of
bytes from one place to another in memory (small string having 255
or less elements)

Both the blocks of data may be in internal/external RAM or one in internal RAM and the other in external RAM.

Internal
external

Case - I:

LOOP:

STOP:

Case-ll:

LOOP:

STOP:

Case-lll:

LOOP:

STOP:

RAM and first 256 bytes of external RAM can be addressed indirectly by RO and R1. However, data in the
RAM can be addressed indirectly by dptr anywhere in the entire 64KB space.

Both the blocks are in internal RAM

.ORG 100H

MOV RO, 30H ; RO points the source block

MOV R1, 40H ; R1 points the destination block

MOV R2, 10D ; No of bytes present in the block is 10

MOV A, @RO
MOV @R1, A
INC RO

INCR1

DINZ R2, LOOP
SJMP STOP

One block in internal RAM (destination) and other'in external RAM within 256 bytes boundary.

.ORG 100H

MOV RO, 30H ; RO points the source block in external RAM
MOV R1, 40H ; R1 points the destination block in internal RAM
MOV R2, 10D ; No of bytes present in the block is 10

MOVX A, @RO
MOV @R1, A
INC RO

INCR1

DINZ R2, LOOP
SJMP STOP

One block in internal RAM (destination) and other in external RAM inside/outside 256 bytes boundary.

.ORG,100H

MOV DPTR, 0030H ; DPTR points the source block in external RAM
MOV R1, 40H ; R1 points the destination block in internal RAM
MOV R2, 10D ; No of bytes present in the block is 10

MOVX A, @DPTR
MOV @R1, A
INC DPTR

INCR1

DINZ R2, LOOP

SJMP STOP

Prof. (Dr.) Saibal Pradhan, CEMK Page - 11

Case-lll: Both the blocks are in external RAM

LOOP:

STOP:

.ORG 100H

MOV DPTR, 1234H

MOV R1, 40H
MOV R2, 10D

MOVX A, @DPTR

MOVX @R1, A
INC DPTR
INCR1

DINZ R2, LOOP

SJMP STOP

; DPTR points the source block in external RAM
; R1 points the destination block also in external RAM
; No of bytes present in the block is 10

2. Write an 8051 Assembly Language Program to interchange two blocks
of data residing in internal RAM

RPT:

STOP:

3. Write

.ORG 2000H

MOV RO, #30H
MOV R1, #40H
MOV R2, #10H

MOV A, @RO
MOV R3, A
MOV A, @R1
MOV @RO, A
MOV A, R3
MOV @R1, A

INC RO
INCR1

DINZ R2, RPT
SJMP STOP

; RO points one block
; R1 points another block
; No of data in both the blocks is 16

; Byte exchanged between two blocks

an 8051, Assembly Language Program to add to 32-bit data

stored in “internal RAM and store the result in internal RAM only.

AGN:

.ORG 1000H

MOV RO, #30H
MOV'R1, #34H
MOV R2, #38H
MOV R3, #04H

CLRC

MOV A, @RO
ADCA, @R1
PUSH OOH
MOV 00, R2
MOV @RO, A
POP OOH

; OP1 pointer

; OP2 pointer

; Result pointer

; Length of the operands (in byte)

; Partial result in Acc

; RO is stored in stack

; RO is modified by the address of destination block storing result
; Partial result is stored in memory pointed out by @RO

; RO is retrieved from stack

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 12

INC RO
INCR1
INC R2

DINZ R3, AGN
CLRA

ADC A, #00H
MOV 00, R2
MOV @RO, A

STOP: SJMP STOP

; Repeat process until partial additions are completed

; Carry stored, if any.

4, Write an 8051 Assembly Language Program to count number‘of positive
and negative data present in a list residing in intermnal. RAM.

.ORG 2000H
MOV RO, #30H
MOV R1, #10D
MOV R2, #00H
MOV R3, #00H
LOOP: MOV A, @RO
JB E7H, NEG
POS: INC R2
SJMP SKIP
NEG: INCR3
SKIP: INCRO
DINZ R1, LOOP
STOP: SJMP STOP

; RO points the list having both positive and negative data
; R1 counts number of data not yet counted

; R2 counts number of positive data

; R3 counts number of negative data

; E7 is the address of msb of the accumulator indicating sign of the data

5. Write an 8051 Assembly, ,Language Program to add two 4-digit BCD
numbers residing in _4dnternal RAM in packed form and also store the

result (5-digit)

.ORG 1000H
MOV RO, #30H
MOV R1, #32H
MOV R2, #34H
MOV R3, #02H
CLRC

RPT: MOV A, @RO
ADCA, @R1
DA A
PUSH OOH
MOV RO, 02H
MOV @RO, A
POP OOH

INC RO
INCR1
INC R2

in, internal RAM.

; Starting address of the first 4-digit packed BCD number

; R3 counting partial addition still left

Prof. (Dr.) Saibal Pradhan, CEMK

Page - 13

STOP:

DJNZ R3, RPT ; Repeat addition, if left

MOV A, #00H ; Store the carry, if any, as the last byte of the result
ADC A, #00H

MOV RO, 02H
MOV @RO, A

SJMP STOP

6. Write an 8051 Assembly Language Program to add N (<256) 8-bit data
residing in external RAM. Store the result (2-byte) .4mv internal
RAM.

RPT:

SKIP:

STOP:

.ORG 1000H

MOV DPTR, #1234H ; Starting address of the N data

MOV RO, #100D ; RO counts the number of data to be still added

CLRA

MOV R1, A ; R1 counts number of times the carry is generated giving the ms byte of result

PUSH EOH ; Accumulator stored in stack before being modified
MOVX A, @DPTR

MOV R2, A

POP EOH ; Accumulator is restored

ADD A, R2

JNC SKIP

INCR1

INC DPTR

DJNZ RO, RPT

MOV 30H, A ; 16~bitiresult is stored in 30H (Isb) and 31H (msb)
MOV 31H, R1

SJMP STOP

7. Write an\48051 Assembly Language Program to multiply two 8-bit
numbers. residing in internal RAM. Also store the result (2-byte) in
internal "RAM.

STOP:

.ORG 200H

MOV A, 40H ; OP1is taken in Acc

MOV FOH, 41H ; OP2 is taken in Register B

MUL AB

MOV 42H, A ; Isb of the result in Acc is stored in 42H memory

MOV 43H, FOH ; msb of the result in Register B is stored in 43H memory
SJMP STOP

Prof. (Dr.) Saibal Pradhan, CEMK Page - 14

8. Write an 8051 Assembly Language Program to divide an 8-bit number
by an 8-bit number residing in internal RAM. Also store the result

in quotient and remainder form in internal RAM.

.ORG 300H

MOV A, 30H ; dividend is taken in Accumulator
MOV B, 31H ; divisor is taken in register B

DIV AB ; quotient in A and remainder in B
MOV 32H, A ; quotient stored in 32H memory
MOV 33H, B ; remainder stored in 33H memory

STOP: SJMP STOP

Prof. (Dr.) Saibal Pradhan, CEMK Page - 15

