
0

1
Result

Operation

a

b

Intel 8085 Microprocessor

Introduction:
What is a microprocessor?
It is a multifunctional Digital Circuit having both combinational and sequential components implemented in a single
silicon wafer or chip. Unlike simple digital circuits designed and optimized to perform specific tasks, a
microprocessor is a generalized circuit that performs a variety of tasks. The operation of the microprocessor is
selected by external command called instruction. Instructions are internally decoded to generate control signals
enabling hardware resources required to complete the tasks. Let us take an example to understand the multifunction
of a circuit.

Fig.1: A circuit performing different operations on its inputs

The above is a combinational circuit that performs ANDing and ORing on its two inputs ‘a’ & ‘b’ depending upon
the control input ‘Operation’. For Operation = 0, Result = (a AND b) and for Operation = 1, Result = (a OR b).
Further circuit blocks can be added for achieving more functions. Fig. 2 is such a circuit.

Fig.2 An one bit Arithmatic & Logic Unit

Prof. (Dr.) Saibal Pradhan, CEMK Page - 1

a 0

1

2

Result

S1, S0

b

+

0

1

Cin

CarryOut

Sub

Intel 8085 Microprocessor

So the operations of the above circuit (can be called a simple microprocessor) can be summarized as:

Opeartion
Control Signals

Opcode
SUB Cin S1 S0

AND 0 X 0 0 0H

OR 0 X 0 1 1 H

ADD 0 0 1 0 2 H

SUB 1 1 1 0 E H

Instruction Set for the machine will be:

0000 a b
0001 a b
0010 a b
1110 a b

Since the microprocessor can perform only four operations, 2 bits are enough to represent opcodes. So an instruction
decoder is to be used which takes 2-bit opcode and decodes to generate control signals required for the operations.

External memory is required for storing all the instructions of a task. Also the arrangement for reading instructions
sequencilaly from the memory should be there inside the microprocessor for their execution.

So a microprocessor is:
 It is a digital circuit implemented in a single silicon wafer or chip
 It contains both combinational and sequential circuit components
 It is a general purpose device
 It can implement various types of functions
 Its operation can be controlled externally
 External commands are stored in memory
 Man machine interface through I/O ports

What does a microprocessor do?
 Any electronic system, whatever complex it may be, can be built around a microprocessor
 New feature can be implemented without changing the system hardware in most of the cases.
 Typical block diagram of a P based system:

Prof. (Dr.) Saibal Pradhan, CEMK Page - 2

Input P

Memory

Output

Intel 8085 Microprocessor

Basic three functions done by any P:
 Data transfer
 Arithmetic & logic operations
 Decision making

Classification of P:
 Based on the width of data handled by the P for data transfer, arithmetic and logic operations by a single

command or instruction.
 For example: - 4-bit, 8-bit, 16-bit, 32-bit etc.
 Intel 4004 is a 4-bit microprocessor, Intel 8085 is an 8-bit P, Intel 8088/86 is 16-bit P etc.
 It should not be confused with the external data bus width. For example, though the external data bus width of

8088 is 8 bits, it is a 16-bit P.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 3

Intel 8085 Microprocessor

Internal Block Diagram of 8085A:

Programming Model of 8085A:

Prof. (Dr.) Saibal Pradhan, CEMK Page - 4

Instruction Reg-8

Instruction
Decoder

ALU-8

FlgReg-5Tmp reg-8Accumulator-8

Timing and Control
CLK GEN CONTROL STATUS DMA RESETX1

X2

Ready
RD WR ALE S

0
 S

1
 IO/M

HOLD

HLDA RESET OUT

RESET IN
CLK OUT

B reg-8 C reg-8

D reg-8 E reg-8

H reg-8 L reg-8

Stack Pointer-16

Prog Counter-16

Incr/Decr A L-16

Addr. Buffer-8 Data/Addr Buf-8

A8-A15
AD0-AD7

8-bit internal data bus

Interrupt Control

INTR
INTA

RST5.5
RST6.5

RST7.5
TRAP

Serial I/O Control

SID SOD

+5 V
GND

8 bits

L

PC

B C

D E

H

A F

SP

16 bits

General purpose registers

Special purpose registers

(BC)

(DE)

(HL)

Intel 8085 Microprocessor

General Purpose Registers:
 B, C, D, E, H, L
 They can be used in any manner by the programmer, for house keeping, memory

addressing, arithmetic operation.
 Flexible to use as six 8-bit registers or as three 16-bit register pairs
 Valid register pairs are BC, DE, HL

Special Purpose Registers:
 A, F, SP, PC
 They are used for accumulating results from arithmetic and logic instructions and also for

housekeeping.
 AF register pair is known as Program status Word (PSW) as they contain the status of the

result after execution of any instruction.

Flag Register:
 Contains 5 flag bits
 Most of the arithmetic and logic instructions modify them
 They reflect the condition of the outcome of the answer from ALU
 They are used for decision making

S = 1, if -ve; Z=1, if zero; AC=1, if aux carry; P=1 for even parity (even no of 1’s); CY=1, if
carry/borrow

Example:
 1
 81H
 +7FH

 0
 7FH
 - 81H

 0

 55H
OR AAH

Result with Carry 1 | 00H 1 | FEH FFH
Flags after the
operation

S=0, Z=1, AC=1,
P=1, CY=1

S=1, Z=0, AC=0, P=0,
CY=1

S=1, Z=0, AC=0, P=1,
CY=0

Problem:
What will be contents of the flags after executing the following operations?
XRA, A; ORA, A; SUB A; CMP A

Prof. (Dr.) Saibal Pradhan, CEMK Page - 5

S Z x AC x P x CY

F7 F6 F4 F2 F0F5 F3 F1

Intel 8085 Microprocessor

Data word formats:
1. Unsigned Integers:
 They are 8 bits, 16 bits or any multiple of 8 bits in width
 8-bit unsigned integers can be found in 8-bit registers
 They can also be stored in single memory locations
 16-bit unsigned integers are found in register pairs and in two consecutive memory locations (lower byte in

low numbered memory and higher byte in high numbered memory location)
 Binary weights of 8-bit unsigned integer are:

D7 D6 D5 D4 D3 D2 D1 D0
(128) (64) (32) (16) (8) (4) (2) (1)

 Examples: 1000 10012 (89H) = 128 + 8 + 1 = 13710
 Same logic may be extended for 16-bit or higher order integers

2. Signed Integers:
 Single-byte signed integers are 7-bit numbers plus a sign bit
 Left most bit is the sign bit, 0 for +ve & 1 for –ve
 Signed 8-bit integer formats are (in 2’s complement):

 +ve integers range from 0 to 127
 -ve integers range from –1 to –128 (in 2’s complement format)
 Binary weights of the bit positions for –ve numbers are:

 Examples: 0111 10112 (7BH) = 64+32+16+8+2+1 = 12310
 1111 10112 (FBH) = -128+32+16+8+2+1 = -510

 Same logic may be extended for 16-bit or higher integers.

3. ASCII data format:
 ASCII is the acronym for American Standard Code for Information Interchange
 It is used by all manufacturer of computer peripherals
 ASCII is a 7-bit code, the 8th is used to hold the parity bit in a data communications system
 In computer systems this bit is often a logic 0.
 In some printers a 0 in the 8th bit causes it to print ASCII characters and a 1 to print graphics characters

4. BCD data formats:
 BCD is the acronym for Binary Coded Decimal
 BCD is used in I/O devices for human to understand
 Expressed in two ways – Packed and Unpacked BCD
 Packed BCD is stored as two digits per byte
 Examples: 7910 in packed BCD is 0111 1001
 Unpacked BCD is stored as single digit per byte
 Example: 710 in unpacked BCD is 0000 0111

Prof. (Dr.) Saibal Pradhan, CEMK Page - 6

Positive Integers

0 7-bit Magnitude

Sign

Negative Integers

0 7-bit 2’s complement number

Sign

D7

(-128) (+64) (+32) (+16) (+8) (+4) (+2) (+1)

D6 D5 D4 D3 D2 D1 D0

Intel 8085 Microprocessor

 Unpacked BCD codes are useful to refer look up table for code conversion etc.
 Microprocessor can also perform BCD operations but not preferred to avoid complication

5. Binary Fractions:
 Binary fractions can be stored in either byte or two-byte form
 Usually they are expressed in unsigned numbers
 Binary weights from left to right are: 2-1, 2-2 , 2-3 , 2-4 , 2-5 and so on
 Example: 1010 0101 = 2-1 + 2-3 + 2-6 + 2-8 = 0.5+0.125+0.015625+0.00390625 = 0.64453125

6. Floating Point data:
 It is similar to scientific notation in base 10
 The floating point format is suitable to express large numbers
 It is used to store mixed as well as integer data
 Floating point numbers are often stored in four bytes
 Format of 4-byte (single precision) floating point number is:

 The left most bit indicates the sign of the mantissa
 Next 8 bits are for exponent stored in excess 127 notation
 Exponent in excess 127 is an unsigned integer that is equal to the actual exponent plus 127
 Mantissa is a normalized 23-bit number with a hidden or implied 1 in 24th bit position
 Examples:

10010 = 11001002 = 1.1001 x 26

S Exponent Mantissa
0 1000 0101 10010000000000000000000

-12.7010 = -1100.112 = 1.10011 x 23

S Exponent Mantissa
1 1000 0010 10011000000000000000000

Prof. (Dr.) Saibal Pradhan, CEMK Page - 7

31

S Exponent Mantissa

2330 22 0

8 bits 23 bits

Intel 8085 Microprocessor

Sample Questions and answers

Q1 Convert the following decimal numbers to 8-bit unsigned integers: 12, 33, 55, 100, 155, 196 and 212

Q2 Convert the following decimal numbers to 16-bit unsigned integers: 156, 222, 1000, 2009, and 10,000

Q3 Convert the following 8-bit signed integers to decimal numbers: 1111 1111, 1000 0111, 0110 1000, and 0111
0000.

Q4 Convert the following decimal numbers to 8-bit signed integers: 12, -12, 32, -63, and –100

Q5 Write the following decimal numbers as both packed and unpacked BCD numbers: 12, 3, 10, 99, 13, and 712
Q6 Convert the following decimal numbers to four-byte binary floating point form: 12, -22, 10.5, 0.002, and -4.25.
Q7 Convert the following 4-byte floating point numbers into decimal numbers:

0100 0001 0100 0000 0000 0000 0000 0000
1011 1111 1000 0000 0000 0000 0000 0000
0100 1000 1110 0000 0000 0000 0000 0000

Answers:
Q1. Decimal Number Corresponding 8-bit Unsigned

Binary Number
Corresponding Hexadecimal
Number

12 0000 1100 0C

33 0010 0001 21

55 0011 0111 37

100 0110 0100 64

155 1001 1011 9B

196 1100 0100 C4

212 1101 0100 D4

Q2. Decimal Number Corresponding 16-bit Unsigned
Binary Number

Corresponding Hexadecimal
Number

156 0000 0000 1001 1100 009C

222 0000 0000 1101 1110 00DE

1000 0000 0011 1110 1000 03E8

2009 0000 0111 1101 1001 07D9

10000 0010 0111 0001 0000 2710

Q3. 8-bit Signed Integers 2’s Complement if -ve Corresponding Decimal Number

1111 1111 0000 0001 -1

1000 0111 0111 1001 -121

0110 1000 - +104

0111 0000 - +112

Q4. Decimal Number -/+ & 8-bit magnitude 8-bit Binary in 2’s Complement

12 + 0000 1100 0000 1100

-12 - 0000 1100 1111 0100

32 + 0010 0000 0010 0000

-63 - 0011 1111 1100 0001

-100 - 0110 0100 1001 1100

Q5. Decimal Number Packed BCD (in HEX) Unpacked BCD (in HEX)

12 0001 0010 (12H) 0000 0010 (02H)
0000 0001 (01H)

3 0000 0011 (03H) 0000 0011 (03H)

10 0001 0000 (10H) 0000 0000 (00H)
0000 0001 (01H)

99 1001 1001 (99H) 0000 1001 (09H)

Prof. (Dr.) Saibal Pradhan, CEMK Page - 8

Intel 8085 Microprocessor

0000 1001 (09H)

13 0001 0011 (13H) 0000 0011 (03H)
0000 0001 (01H)

712 0000 0111 0001 0010 (0712H) 0000 0010 (02H)
0000 0001 (01H)
0000 0111 (07H)

Q6. Decimal Number Binary with fraction and sign 4-byte floating point binary

12 +1100.0 0 1000 0010 100………………..0000

-22 -1 0110.0 1 1000 0011 01100……………0000

10.5 +1010.1 0 1000 0010 010100………….0000

0.002 +0.0000 0000 1 0 0111 0110 000000………….0000

-4.25 -0100.01 1 1000 0001 000100………….0000

Q7. 4-byte floating point number Binary with fraction and sign Decimal number

0 1000 0010 100………………….000 +0.1 x 2130-127 4

1 0111 1111 000………………….000 -0.0 x 2127-127 0

0 1001 0001 110………………….000 +0.11 x 2145-127 3x64x1024 = 196608

Memory Map of 8085A:

Prof. (Dr.) Saibal Pradhan, CEMK Page - 9

Intel 8085 Microprocessor

 It has 16-bit address lines and 8-bit data lines.
 It can therefore address 216 or 26 x 210 or 64K byte memory locations.
 Memory locations are numbered from 0000H to FFFFH.

I/O Space of 8085A:

Prof. (Dr.) Saibal Pradhan, CEMK Page - 10

RST 0

RST 1

RST 2

RST 3

RST 4

TRAP

RST 5

RST 5.5

RST 6

RST 6.5

RST 7

RST 7.5

Restart
s

User
Space

8
bits

0000

0008

0010

0018

0020

0024

0028

002C

0030

0034

0034

0038

003C

FFFF

Intel 8085 Microprocessor

 8085A can address 256 input devices.
 It can also address 256 output devices.
 They are numbered from 00H to FFH.
 Input and Output Devices are identified by RD and WR signals respectively
 I/O devices are accessed by IN/OUT instructions.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 11

8-Bit
User

 I/O Ports

00

FF

Intel 8085 Microprocessor

Instruction Set and Programming The 8085

Command Word Formats:
Three different Command Word Formats are used by 8085A

 One byte long - 204
 Two-byte long - 18
 Three-byte long - 24

 Total - 246
 Command Word (Instruction) Formats are:

Instruction Set of 8085A:
It can be broken into three main categories:

1. Data Transfer Instructions,
2. Arithmetic & Logic Instructions and
3. Program Control Instructions.

Rules of writing instructions:
[Label:] op-code [des op], [source op] [; Comments]

Fields within 3rd brackets are optional.

Addressing Modes: The way the operands (internal/external resources like registers/meory/IO)
are represented in an instruction is called addressing mode. Addressing modes may be of the
following types:

 Register addressing
 Immediate addressing
 Direct addressing and
 Register indirect addressing

Prof. (Dr.) Saibal Pradhan, CEMK Page - 12

Op-CodeOne-byte

Op-Code Immediate Data

Op-Code I/O Port Address

Two-byte

Three-byte Op-Code Low-byte Data High-byte Data

Op-Code Low-order Addr. High-order Addr.

Intel 8085 Microprocessor

Register addressing
The instruction specifies the registers (B, C, D, E, H, L or A) or the register pairs (BC, DE, HL
or SP) used with the instruction. These are all one byte instructions.
Examples:

MOV B, A; ADD D etc.

Immediate addressing
This mode of addressing is used when constant data are used in a program. The data are placed
immediately following the op-code and stored in the program memory. 8085A has two forms
immediate addressing: 8-bit and 16-bit immediate addressing.
Instruction format:

byte1 byte2 byte3

Examples:
MVI A, 12H; ADI 34H etc.

Direct Addressing
Instructions that directly address the memory always include the memory address of the data.
This address is stored following the op-code in the program. Instruction format is:

byte1 byte2 byte3

Examples:
LDA 1234H; STA 9876H etc.

Register Indirect Addressing:
In some instructions register pairs BC, DE and HL are used to indicate the memory location
containing the operand. This type of addressing the memory indirectly by the memory pointers is
called register indirect addressing. These are all one byte instructions.

Examples:
LDAX B (or D); STAX B (or D) etc.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 13

Op-code 8-bit Immediate Data

Op-code Low byte of 16-bit Data High byte of 16-bit Data

Op-code Low order address High order address

Intel 8085 Microprocessor

Instruction Naming Conventions:
The mnemonics assigned to the instructions are designed to indicate the function of the
instruction. Instructions fall into the following functional categories:

SL Mnemonic Purpose Syntax Note
Data Transfer Instructions
The data transfer instructions move data between registers or between memory and register.
1 MVI Move Immediate data MVI rd, d8 rd may be one of 7 8-bit

registers and M. M is the
memory pointed to by HL
register pair.

2 MOV Move data between 8-bit register
to register and between register to
memory pointed to by HL.

MOV rd, rs rd and rs may be any
combination of 7 8-bit registers
and M except M, M.

3 LDA Load Accumulator Directly
from Memory

LDA a16 A = [a16], a16 is 16-bit address
of a memory location

4 STA Store Accumulator Directly in
Memory

STA a16 [a16] = A

5 LHLD Load H & L Registers Directly
from Memory

LHLD a16 L = [a16], H = [a16+1]

6 SHLD Store H & L Registers Directly
in Memory

SHLD a16 [a16] = L, [a16+1] = H

7 LXI Load Register Pair with 16-bit
Immediate data

LXI rp rp may be one of HL, BC, DE,
SP.

8 LDAX Load Accumulator from
Address in Register Pair

LDAX rp rp may be one of BC and DE

9 STAX Store Accumulator in Address
in Register Pair

STAX rp rp may be one of BC and DE

10 XCHG Exchange H & L with D & E XCHG
11 XTHL Exchange Top of Stack with H

& L
XTHL

Arithmetic Group
The arithmetic instructions are used to perform arithmetic operations
12 ADI Add Immediate Data to

Accumulator
ADI d8 d8 is the 8-bit immediate data

13 ADD Add to Accumulator ADD r r may be one of 7 8-bit registers
and M

14 ADC Add to Accumulator Using
Carry Flag

ADC r r may be one of 7 8-bit registers
and M

15 ACI Add Immediate data to
Accumulator Using Carry

ACI r r may be one of 7 8-bit registers
and M

16 SUI Subtract Immediate Data from
Accumulator

SUI d8 d8 is the 8-bit immediate data

17 SUB Subtract from Accumulator SUB r r may be one of 7 8-bit registers
and M

18 SBI Subtract Immediate from SBI d8 d8 is the 8-bit immediate data

Prof. (Dr.) Saibal Pradhan, CEMK Page - 14

Intel 8085 Microprocessor

Accumulator Using Borrow
(Carry) Flag

19 SBB Subtract from Accumulator
Using Borrow (Carry) Flag

SBB r r may be one of 7 8-bit registers
and M

20 INR Increment Specified Byte by
One

INR r r may be one of 7 8-bit registers
and M

21 DCR Decrement Specified Byte by
One

DCR r r may be one of 7 8-bit registers
and M

22 INX Increment Register Pair by One INX rp rp may be one of BC, DE, HL,
SP

23 DCX Decrement Register Pair by
One

DCX rp rp may be one of BC, DE, HL,
SP

24 DAD Double Register Add; Add
Content of Register Pair to H
& L Register Pair

DAD rp rp may be one of BC, DE, HL,
SP

25 DAA Decimal adjust accumulator
after BCD addition

DAA

Logical Group
This group performs logical (Boolean) operations on data in registers and memory and on
condition flags.
 The logical AND, OR, and Exclusive OR instructions enable you to set specific bits in the
accumulator ON or OFF.

26 ANI Logical AND with Accumulator
Using Immediate Data

ANI d8 d8 is the 8-bit immediate data

27 ANA Logical AND with Accumulator ANA r r may be one of 7 8-bit registers
and M

28 ORA Logical OR with Accumulator ORA r r may be one of 7 8-bit registers
and M

29 ORI Logical OR with Accumulator
Using Immediate Data

ORI d8 d8 is the 8-bit immediate data

30 XRI Exclusive OR Using Immediate
Data

SRI d8 d8 is the 8-bit immediate data

31 XRA Exclusive Logical OR with
Accumulator

XRA r r may be one of 7 8-bit registers
and M

32 CPI Compare Using Immediate Data CPI d8 d8 is the 8-bit immediate data
33 CMP Compare CMP r r may be one of 7 8-bit registers

and M
34 RLC Rotate Accumulator Left RLC Rotation by one bit position
35 RRC Rotate Accumulator Right RRC Rotation by one bit position
36 RAL Rotate Left Through Carry RAL Rotation by one bit position
37 RAR Rotate Right Through Carry RAR Rotation by one bit position
38 CMA Complement Accumulator CMA
39 CMC Complement Carry Flag CMC
40 STC Set Carry Flag STC
Branch Group:

Prof. (Dr.) Saibal Pradhan, CEMK Page - 15

Intel 8085 Microprocessor

The branching instructions alter normal sequence of program flow, either unconditionally or
conditionally. The unconditional branching instructions are as follows:

JMP Jump
CALL Call
RET Return

Conditional branching instructions examine the status of one of four condition flags to determine
whether the specified branch is to be executed. The conditions that may be specified are as
follows:

NZ Not Zero (Z = 0)
Z Zero (Z = 1)
NC No Carry (C = 0)
C Carry (C = 1)
PO Parity Odd (P = 0)
PE Parity Even (P = 1)
P Plus (S = 0)
M Minus (S = 1)

Thus, the conditional branching instructions are specified as follows:

Jumps Calls Returns
JC CC RC (Carry)
JNC CNC RNC (No Carry)
JZ CZ RZ (Zero)
JNZ CNZ RNZ (Not Zero)
JP CP RP (Plus)
JM CM RM (Minus)
JPE CPE RPE (Parity Even)
JPO CPO RPO (Parity Odd)

Two other instructions can affect a branch by replacing the contents or the program counter:

PCHL Move H & L to Program Counter
RST Special Restart Instruction Used with Interrupts

Stack, I/O and Machine Control Instructions:
The following instructions affect the Stack and/or Stack Pointer:

PUSH Push Two bytes of Data onto the Stack
POP Pop Two Bytes of Data off the Stack
XTHL Exchange Top of Stack with H & L
SPHL Move content of H & L to Stack Pointer

Prof. (Dr.) Saibal Pradhan, CEMK Page - 16

Intel 8085 Microprocessor

The I/0 instructions are as follows:

IN Initiate Input Operation
OUT Initiate Output Operation

The Machine Control instructions are as follows:
EI Enable Interrupt System
DI Disable Interrupt System
HLT Halt
NOP No Operation

8085A Instruction Set:

SL Mnemonic Op-code Bytes Clock Function
Flag

Z C A S P
Immediate data transfer instructions:
1 MVI B, d8 06-d8 2 7 B = d8 - - - - -
2 MVI C, d8 0E-d8 2 7 C = d8 - - - - -
3 MVI D, d8 16-d8 2 7 D = d8 - - - - -
4 MVI E, d8 1E-d8 2 7 E = d8 - - - - -
5 MVI H, d8 26-d8 2 7 H = d8 - - - - -
6 MVI L, d8 2E-d8 2 7 L = d8 - - - - -
7 MVI M, d8 36-d8 2 10 M = d8 - - - - -
8 MVI A, d8 3E-d8 2 7 A = d8 - - - - -
9 LXI B, d16 01-ll-hh 3 10 BC = d16 - - - - -
10 LXI D, d16 11-ll-hh 3 10 DE = d16 - - - - -
11 LXI H, d16 21-ll-hh 3 10 HL = d16 - - - - -
12 LXI SP, d16 31-ll-hh 3 10 SP = d16 - - - - -
Direct Data Transfer
13 LDA a16 3A-ll-hh 3 13 A = [a16] - - - - -
14 STA a16 32-ll-hh 3 13 [a16] = A - - - - -
15 LHLD a16 2A-ll-hh 3 16 HL = [a16] - - - - -
16 SHLD a16 22-ll-hh 3 16 [a16] = HL - - - - -
Indirect Data Transfer Instructions
17 LDAX B 0A 1 7 A = [BC] - - - - -
18 LDAX D 1A 1 7 A = [DE] - - - - -
19 STAX B 02 1 7 [BC] = A - - - - -
20 STAX D 12 1 7 [DE] = A - - - - -
Register Data Transfer Instructions
21 MOV B, B 40 1 4 B = B - - - - -
22 MOV B, C 41 1 4 B = C - - - - -
23 MOV B, D 42 1 4 B = D - - - - -
24 MOV B, E 43 1 4 B = E - - - - -
25 MOV B, H 44 1 4 B = H - - - - -
26 MOV B, L 45 1 4 B = L - - - - -
27 MOV B, M 46 1 7 B = M - - - - -

Prof. (Dr.) Saibal Pradhan, CEMK Page - 17

Intel 8085 Microprocessor

SL Mnemonic Op-code Bytes Clock Function
Flag

Z C A S P
28 MOV B, A 47 1 4 B = A - - - - -
29 MOV C, B 48 1 4 C = B - - - - -
30 MOV C, C 49 1 4 C = C - - - - -
31 MOV C, D 4A 1 4 C = D - - - - -
32 MOV C, E 4B 1 4 C = E - - - - -
33 MOV C, H 4C 1 4 C = H - - - - -
34 MOV C, L 4D 1 4 C = L - - - - -
35 MOV C, M 4E 1 7 C = M - - - - -
36 MOV C, A 4F 1 4 C = A - - - - -
37 MOV D, B 50 1 4 D = B - - - - -
38 MOV D, C 51 1 4 D = C - - - - -
39 MOV D, D 52 1 4 D = D - - - - -
40 MOV D, E 53 1 4 D = E - - - - -
41 MOV D, H 54 1 4 D = H - - - - -
42 MOV D, L 55 1 4 D = L - - - - -
43 MOV D, M 56 1 7 D = M - - - - -
44 MOV D, A 57 1 4 D = A - - - - -
45 MOV E, B 58 1 4 E = B - - - - -
46 MOV E, C 59 1 4 E = C - - - - -
47 MOV E, D 5A 1 4 E = D - - - - -
48 MOV E, E 5B 1 4 E = E - - - - -
49 MOV E, H 5C 1 4 E = H - - - - -
50 MOV E, L 5D 1 4 E = L - - - - -
51 MOV E, M 5E 1 7 E = M - - - - -
52 MOV E, A 5F 1 4 E = A - - - - -
53 MOV H, B 60 1 4 H = B - - - - -
54 MOV H, C 61 1 4 H = C - - - - -
55 MOV H, D 62 1 4 H = D - - - - -
56 MOV H, E 63 1 4 H = E - - - - -
57 MOV H, H 64 1 4 H = H - - - - -
58 MOV H, L 65 1 4 H = L - - - - -
59 MOV H, M 66 1 7 H = M - - - - -
60 MOV H, A 67 1 4 H = A - - - - -
61 MOV L, B 68 1 4 L = B - - - - -
62 MOV L, C 69 1 4 L = C - - - - -
63 MOV L, D 6A 1 4 L = D - - - - -
64 MOV L, E 6B 1 4 L = E - - - - -
65 MOV L, H 6C 1 4 L = H - - - - -
66 MOV L, L 6D 1 4 L = L - - - - -
67 MOV L, M 6E 1 7 L = M - - - - -
68 MOV L, A 6F 1 4 L = A - - - - -
69 MOV M, B 70 1 7 M = B - - - - -
70 MOV M, C 71 1 7 M = C - - - - -
71 MOV M, D 72 1 7 M = D - - - - -
72 MOV M, E 73 1 7 M = E - - - - -
73 MOV M, H 74 1 7 M = H - - - - -
74 MOV M, L 75 1 7 M = L - - - - -

Prof. (Dr.) Saibal Pradhan, CEMK Page - 18

Intel 8085 Microprocessor

SL Mnemonic Op-code Bytes Clock Function
Flag

Z C A S P
- MOV M, M - -
75 MOV M, A 77 1 7 M = A - - - - -
76 MOV A, B 78 1 4 A = B - - - - -
77 MOV A, C 79 1 4 A = C - - - - -
78 MOV A, D 7A 1 4 A = D - - - - -
79 MOV A, E 7B 1 4 A = E - - - - -
80 MOV A, H 7C 1 4 A = H - - - - -
81 MOV A, L 7D 1 4 A = L - - - - -
82 MOV A, M 7E 1 7 A = M - - - - -
83 MOV A, A 7F 1 4 A = A - - - - -
Stack Data Transfer Instructions
84 POP B C1 1 10 C = [SP], B = [SP+1] - - - - -
85 POP D D1 1 10 E = [SP], D = [SP+1] - - - - -
86 POP H E1 1 10 L = [SP], H = [SP+1] - - - - -
87 POP PSW F1 1 10 A = [SP], F = [SP+1] * * * * *
88 PUSH B C5 1 10 [SP-1] = B, [SP-2] = C - - - - -
89 PUSH D D5 1 10 [SP-1] = D, [SP-2] = E - - - - -
90 PUSH H E5 1 10 [SP-1] = H, [SP-2] = L - - - - -
91 PUSH PSW F5 1 10 [SP-1] = F, [SP-2] = A - - - - -
92 XTHL E3 1 16 HL ↔ stack data - - - - -
Miscellaneous Data Transfer Instructions
93 IN p8 DB-p8 2 10 Inputs data to A - - - - -
94 OUT p8 D3-p8 2 10 Outputs data from A - - - - -
95 SPHL F9 1 6 SP = HL - - - - -
96 XCHG EB 1 4 HL ↔ DE - - - - -
Arithmetic and Logic Instructions
8-bit Binary Addition
97 ADI d8 C6-d8 2 7 A = A + d8 * * * * *
98 ADD B 80 1 4 A = A + B * * * * *
99 ADD C 81 1 4 A = A + C * * * * *
100 ADD D 82 1 4 A = A + D * * * * *
101 ADD E 83 1 4 A = A + E * * * * *
102 ADD H 84 1 4 A = A + H * * * * *
103 ADD L 85 1 4 A = A + L * * * * *
104 ADD M 86 1 7 A = A + M * * * * *
105 ADD A 87 1 4 A = A + A * * * * *
Addition with Carry
106 ACI d8 CE-d8 2 7 A = A + d8 + CY * * * * *
107 ADC B 88 1 4 A = A + B + CY * * * * *
108 ADC C 89 1 4 A = A + C + CY * * * * *
109 ADC D 8A 1 4 A = A + D + CY * * * * *
110 ADC E 8B 1 4 A = A + E + CY * * * * *
111 ADC H 8C 1 4 A = A + H + CY * * * * *
112 ADC L 8D 1 4 A = A + L + CY * * * * *
113 ADC M 8E 1 7 A = A + M + CY * * * * *
114 ADC A 8F 1 4 A = A + A + CY * * * * *
16-bit Addition

Prof. (Dr.) Saibal Pradhan, CEMK Page - 19

Intel 8085 Microprocessor

SL Mnemonic Op-code Bytes Clock Function
Flag

Z C A S P
115 DAD B 09 1 10 HL = HL + BC - * - - -
116 DAD D 19 1 10 HL = HL + DE - * - - -
117 DAD H 29 1 10 HL = HL + HL - * - - -
118 DAD SP 39 1 10 HL = HL + SP - * - - -
BCD Addition

119 DAA 27 1 4
Decimal adjust
accumulator after BCD
addition

* * * * *

Increment
120 INR B 04 1 4 B = B + 1 * - * * *
121 INR C 0C 1 4 C = C + 1 * - * * *
122 INR D 14 1 4 D = D + 1 * - * * *
123 INR E 1C 1 4 E = E + 1 * - * * *
124 INR H 24 1 4 H = H + 1 * - * * *
125 INR L 2C 1 4 L = L + 1 * - * * *
126 INR M 34 1 10 M = M + 1 * - * * *
127 INR A 3C 1 4 A = A + 1 * - * * *
128 INX B 03 1 6 BC = BC + 1 - - - - -
129 INX D 13 1 6 DE = DE + 1 - - - - -
130 INX H 23 1 6 HL = HL + 1 - - - - -
131 INX SP 33 1 6 SP = SP + 1 - - - - -
Subtraction
8-bit Subtraction
132 SUI d8 D6-d8 1 7 A = A – d8 * * * * *
133 SUB B 90 1 4 A = A – B * * * * *
134 SUB C 91 1 4 A = A – C * * * * *
135 SUB D 92 1 4 A = A – D * * * * *
136 SUB E 93 1 4 A = A – E * * * * *
137 SUB H 94 1 4 A = A – H * * * * *
138 SUB L 95 1 4 A = A – L * * * * *
139 SUB M 96 1 7 A = A – M * * * * *
140 SUB A 97 1 4 A = A – A 1 0 0 0 1
Subtract with Borrow
141 SBI d8 DE-d8 2 7 A = A – d8 – CY * * * * *
142 SBB B 98 1 4 A = A – B – CY * * * * *
143 SBB C 99 1 4 A = A – C – CY * * * * *
144 SBB D 9A 1 4 A = A – D – CY * * * * *
145 SBB E 9B 1 4 A = A – E – CY * * * * *
146 SBB H 9C 1 4 A = A – H – CY * * * * *
147 SBB L 9D 1 4 A = A – L – CY * * * * *
148 SBB M 9E 1 7 A = A – M – CY * * * * *
149 SBB A 9F 1 4 A = A – A – CY * * * * *
Decrement
150 DCR B 05 1 4 B = B – 1 * - * * *
151 DCR C 0D 1 4 C = C – 1 * - * * *
152 DCR D 15 1 4 D = D – 1 * - * * *
153 DCR E 1D 1 4 E = E – 1 * - * * *

Prof. (Dr.) Saibal Pradhan, CEMK Page - 20

Intel 8085 Microprocessor

SL Mnemonic Op-code Bytes Clock Function
Flag

Z C A S P
154 DCR H 25 1 4 H = H – 1 * - * * *
155 DCR L 2D 1 4 L = L – 1 * - * * *
156 DCR M 35 1 10 M = M – 1 * - * * *
157 DCR A 3D 1 4 A = A – 1 * - * * *
158 DCX B 0B 1 6 BC = BC – 1 - - - - -
159 DCX D 1B 1 6 DE = DE – 1 - - - - -
160 DCX H 2B 1 6 HL = HL – 1 - - - - -
161 DCX SP 33 1 6 SP = SP – 1 - - - - -
Compares
162 CPI d8 FE-d8 2 7 Flags = A – d8 * * * * *
163 CMP B B8 1 4 Flags = A – B * * * * *
164 CMP C B9 1 4 Flags = A – C * * * * *
165 CMP D BA 1 4 Flags = A – D * * * * *
166 CMP E BB 1 4 Flags = A – E * * * * *
167 CMP H BC 1 4 Flags = A – H * * * * *
168 CMP L BD 1 4 Flags = A – L * * * * *
169 CMP M BE 1 7 Flags = A – M * * * * *
170 CMP A BF 1 4 Flags = A – A 1 0 0 0 1
Logic Instructions
Inversion
171 CMA 2F 1 4 A = Ā - - - - -
The AND Operation
172 ANI d8 E6-d8 2 7 A = A * d8 * 0 0 * *
173 ANA B A0 1 4 A = A * B * 0 * * *
174 ANA C A1 1 4 A = A * C * 0 * * *
175 ANA D A2 1 4 A = A * D * 0 * * *
176 ANA E A3 1 4 A = A * E * 0 * * *
177 ANA H A4 1 4 A = A * H * 0 * * *
178 ANA L A5 1 4 A = A * L * 0 * * *
179 ANA M A6 1 7 A = A * M * 0 * * *
180 ANA A A7 1 4 A = A * A * 0 * * *
The OR Operation
181 ORI d8 F6-d8 2 7 A = A ۷ d8 * 0 0 * *
182 ORA B B0 1 4 A = A ۷ B * 0 0 * *
183 ORA C B1 1 4 A = A ۷ C * 0 0 * *
184 ORA D B2 1 4 A = A ۷ D * 0 0 * *
185 ORA E B3 1 4 A = A ۷ E * 0 0 * *
186 ORA H B4 1 4 A = A ۷ H * 0 0 * *
187 ORA L B5 1 4 A = A ۷ L * 0 0 * *
188 ORA M B6 1 7 A = A ۷ M * 0 0 * *
189 ORA A B7 1 4 A = A ۷ A * 0 0 * *
The Exclusive-OR Operation
190 XRI d8 EE-d8 2 7 A = A XOR d8 * 0 0 * *
191 XRA B A8 1 4 A = A XOR B * 0 0 * *
192 XRA C A9 1 4 A = A XOR C * 0 0 * *
193 XRA D AA 1 4 A = A XOR D * 0 0 * *
194 XRA E AB 1 4 A = A XOR E * 0 0 * *

Prof. (Dr.) Saibal Pradhan, CEMK Page - 21

Intel 8085 Microprocessor

SL Mnemonic Op-code Bytes Clock Function
Flag

Z C A S P
195 XRA H AC 1 4 A = A XOR H * 0 0 * *
196 XRA L AD 1 4 A = A XOR L * 0 0 * *
197 XRA M AE 1 7 A = A XOR M * 0 0 * *
198 XRA A AF 1 4 A = A XOR A 1 0 0 0 1
Rotate Instructions
199 RLC 07 1 4 Rotate A left - * - - -
200 RRC 0F 1 4 Rotate A right - * - - -
201 RAL 17 1 4 Rotate A left thru Cary - * - - -
202 RAR 1F 1 4 Rotate A right thru Carry - * - - -
Program Control Instructions
Unconditional Jump Instructions
203 JMP a16 C3-ll-hh 3 10 Program continues at a16 - - - - -
204 PCHL E9 1 6 Program continues at

address HL
- - - - -

Conditional Jump Instructions
205 JZ a16 CA-ll-hh 3 7/10 Jump if zero - - - - -
206 JNZ a16 C2-ll-hh 3 7/10 Jump if not zero - - - - -
207 JC a16 DA-ll-hh 3 7/10 Jump if carry set - - - - -
208 JNC a16 D2-ll-hh 3 7/10 Jump if carry cleared - - - - -
209 JM a16 FA-ll-hh 3 7/10 Jump if minus - - - - -
210 JP a16 F2-ll-hh 3 7/10 Jump if positive - - - - -
211 JPE a16 EA-ll-hh 3 7/10 Jump if parity even - - - - -
212 JPO a16 E2-ll-hh 3 7/10 Jump if parity odd - - - - -
Linking to a Subroutine
213 CALL a16 CE-ll-hh 3 18 Call subroutine at a16 - - - - -
214 CC a16 DC-ll-hh 3 9/18 Call subroutine on carry - - - - -
215 CNC a16 D4-ll-hh 3 9/18 Call subroutine on no carry - - - - -
216 CZ a16 CC-ll-hh 3 9/18 Call subroutine on zero - - - - -
217 CNZ a16 C4-ll-hh 3 9/18 Call subroutine on not zero - - - - -
218 CM a16 FC-ll-hh 3 9/18 Call subroutine on minus - - - - -
219 CP a16 F4-ll-hh 3 9/18 Call subroutine on positive - - - - -
220 CPE a16 EC-ll-hh 3 9/18 Call sub on parity even - - - - -
221 CPO a16 E4-ll-hh 3 9/18 Call sub on parity odd - - - - -
Returning from a subroutine
222 RET C9 1 10 Return from subroutine - - - - -
223 RC D8 1 6/12 Return if carry set - - - - -
224 RNC D0 1 6/12 Return if carry cleared - - - - -
225 RZ C8 1 6/12 Return if zero - - - - -
226 RNZ C0 1 6/12 Return if not zero - - - - -
227 RM F8 1 6/12 Return if minus - - - - -
228 RP F0 1 6/12 Return if positive - - - - -
229 RPE E8 1 6/12 Return if parity even - - - - -
230 RPO E0 1 6/12 Return if parity odd - - - - -
Restart Instructions
231 RST 0 C7 1 12 Call subroutine at 0000H - - - - -
232 RST 1 CF 1 12 Call subroutine at 0008H - - - - -
233 RST 2 D7 1 12 Call subroutine at 0010H - - - - -

Prof. (Dr.) Saibal Pradhan, CEMK Page - 22

Intel 8085 Microprocessor

SL Mnemonic Op-code Bytes Clock Function
Flag

Z C A S P
234 RST 3 DF 1 12 Call subroutine at 0018H - - - - -
235 RST 4 E7 1 12 Call subroutine at 0020H - - - - -
236 RST 5 EF 1 12 Call subroutine at 0028H - - - - -
237 RST 6 F7 1 12 Call subroutine at 0030H - - - - -
238 RST 7 FF 1 12 Call subroutine at 0038H - - - - -
Miscellaneous Instructions
Microprocessor Control Instructions
239 NOP 00 1 4 Performs no operation - - - - -
240 STC 37 1 4 Set carry flag - 1 - - -
241 CMC 3F 1 4 Complement carry flag - * - - -
242 HLT 76 1 4 Halt until reset or interrupt - - - - -
243 EI FB 1 4 Enable interrupts - - - - -
244 DI F3 1 4 Disable interrupts - - - - -
245 RIM 20 1 4 Read interrupt mask - - - - -
246 SIM 30 1 4 Set interrupt mask - - - - -
Note: -, no change; *, changes;

Prof. (Dr.) Saibal Pradhan, CEMK Page - 23

Intel 8085 Microprocessor

Sample Questions and Solutions:
1. Write a sequence of immediate instructions that will place a 0000 in BC and a 12H in

Accumulator?
2. Write a sequence of immediate instructions that will store 16H in memory location 1200H and a

17H in memory location 1202H?
3. Explain how does the LDA 1000H instruction function?
4. Explain what answer is found in memory locations 1200H and 1201H after the execution of the

following instructions

MVI H, 22H
MVI L, 44H
SHLD 1200H

5. Explain what answer is found in memory locations 1200H in the following sequence of
instructions.

MVI B, 12H
MVI C, 00H
MVI A, 77H
STAX B

6. Write a sequence of instructions that will use register indirect addressing to transfer the number
stored in memory location 1300H into memory location 1301H.

7. Explain what does the MOV M, C instruction do if HL=1234H and C=34H.
8. Write a sequence of instructions that use MOV instructions to swap the contents of the BC to DE

register pairs.
9. Write a sequence of instructions that will store a zero in memory location 1000H through

10003H.
10. If a 1000H is pushed into the stack followed by a 2000H, which number is the first to come off

the stack?
11. What number appears in BC register pair after the following sequence of instructions.

LXI H, 3000H
LXI D, 2500H
PUSH H
PUSH D
POP H
POP B

12. If a PUSH PSW is immediately followed by a POP B, in which register do the flag data appear?
13. Write a sequence of instructions that will add a 56H to the number in the B register.
14. Write a sequence of instructions that will add the content of H to that of L register.
15. Write a sequence of instructions that will add the content of HL to that of DE register pair (not

using DAD D)
16. Write a sequence of instructions that will add the BCD numbers placed in B and L registers.
17. Write e sequence of instructions that will one’s complement the contents of DE register pair.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 24

Intel 8085 Microprocessor

Solutions:
1. Write a sequence of immediate instructions that will place a 0000 in BC and a 12H in

Accumulator?

LXI B, 0000H MVI B, 00H
 or MVI C, 00H

MVI A, 12H MVI A, 12H

2. Write a sequence of immediate instructions that will store 16H in memory location 1200H and a
17H in memory location 1202H?

LXI H, 1200H
MVI M, 16H
INX H
INX H
MVI M, 17H

3. Explain how does the LDA 1000H instruction function?

After the execution of the instruction, the content of memory having address 1000H is
loaded into accumulator.

4. Explain what answer is found in memory locations 1200H and 1201H after the execution of the
following instructions

MVI H, 22H
MVI L, 44H
SHLD 1200H

After the execution of the first two instructions, the content of HL register pair will be
2214H. SHLD instruction is a direct mode of instruction after execution of which the
content of L and H registers will be stored in memory location1200H and 1201H
respectively.

5. Explain what answer is found in memory locations 1200H in the following sequence of
instructions.

MVI B, 12H
MVI C, 00H
MVI A, 77H
STAX B

After the execution of first two instructions, BC register pair will initialized with 1200H.
The third instruction stores 77H in accumulator. The final instruction is a register indirect
mode of instruction which stores the content of accumulator in memory location pointed
out by BC register pair. Therefore, the accumulator value (77H) will be stored in memory
location 1200H.

6. Write a sequence of instructions that will use register indirect addressing to transfer the number
stored in memory location 1300H into memory location 1301H.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 25

Intel 8085 Microprocessor

LXI B, 1300H
LDAX B
INX B
STAX B

7. Explain what does the MOV M, C instruction do if HL=1234H and C=34H.

The instruction MOV M, C stores the content of register C in memory location pointed
out by HL register pair. In the present case, C=34H and HL=1234H, thus the data 34H will
be stored in memory location 1234H.

8. Write a sequence of instructions that use MOV instructions to swap the contents of the BC to DE
register pairs.

MOV H, B ; content of BC is temporarily stored in HL
MOV L, C

MOV B, D ; content of DE is stored in BC
MOV C, E

MOV D, H ; finally the content of BC kept aside in HL is stored in DE
MOV E, L

9. Write a sequence of instructions that will store a zero in memory location 1000H through
10003H.

LXI H, 1000H ; HL =1000H
MOV A, L
MOV M, A
INX H ; HL =1001H
MOV M, A
INX H ; HL =1002H
MOV M, A
INX H
MOV M, A ; HL = 1003H
HLT

This is an example of iteration i.e. repetitive work. The above piece of program stores
values in four memory locations by using four separate instructions which is not efficient
in case of large number of iteration. Large iterations are implemented by repeating a
group of instructions in a number of times called looping and is demonstrated below
with the same example. A counter is used to control looping:

LXI H, 1000H ; memory pointer
MVI C, 04H ; four memory locations to be loaded

LOOP: MOV M, A ; data stored in memory
INX H ; pointer updated for next memory

Prof. (Dr.) Saibal Pradhan, CEMK Page - 26

Intel 8085 Microprocessor

DCR C ; counter decremented
JNZ LOOP ; the process is repeated until counter is zero
HLT

10. If a 1000H is pushed into the stack followed by a 2000H, which number is the first to come off
the stack?

In the present case, 1000H is PUSHed first and then 2000H. As stack is a LIFO memory,
the last data PUSHed (2000H) in stack will be retrieved first.

11. What number appears in BC register pair after the following sequence of instructions.

LXI H, 3000H
LXI D, 2500H
PUSH H
PUSH D
POP H
POP B

Content of HL is pushed in stack first and then the content of DE. Poping of HL is done
first and then BC. Therefore, POP H stores the value of DE (as pushed last) in HL (2500H)
while POP B retrieves the original value of HL in BC which is 3000H.

12. If a PUSH PSW is immediately followed by a POP B, in which register do the flag data appear?

PSW, the program status word, is the combination of Accumulator (msb) and flag
register (lsb). Thus execution of POP B immediately after PUSH PSW will retrieve the
value of Accumulator plus flag register in BC register pair. The value of accumulator will
appear in B and that of flag register in C.

13. Write a sequence of instructions that will add a 56H to the number in the B register.

MVI A, 56H
ADD B

14. Write a sequence of instructions that will add the content of H to that of L register.

MOV A, H
ADD L

15. Write a sequence of instructions that will add the content of HL to that of DE register pair (not
using DAD D)

MOV A, E
ADD L
MOV L, A ; low byte of result is placed in L
MOV A, D
ADC H
MOV H, A ; high byte result is placed in H and carry, if any, is available in CY flag

Prof. (Dr.) Saibal Pradhan, CEMK Page - 27

Intel 8085 Microprocessor

16. Write a sequence of instructions that will add the BCD numbers placed in B and L registers.

MOV A, B
ADD L
DAA ; result is in Accumulator and carry, if any, is available in CY flag.

17. Write a sequence of instructions that will do one’s complement to the contents of DE register
pair.

MOV A, E
CMA
MOV E, A
MOV A, D
CMA
MOV D, A

Prof. (Dr.) Saibal Pradhan, CEMK Page - 28

Intel 8085 Microprocessor

Assembly Language Programming
Lecture-10
Assembly Language Programming:
 The sequence of commands used to tell a microprocessor what to do is called a program. The commands are

called instructions.
 Some part of it is called Monitor Program or Operating System and the other is called User Program or

Application Program
 Operating Program basically organizes the inputs and the outputs with the system
 User Program supplies the variables and their formats
 Microprocessor can only understand the instructions coded in binary called machine language.
 Machine language is difficult, if not impossible, for human to handle.
 Assembly language was developed to provide mnemonics plus other features to make the programming easy,

faster and less prone to error.
 Instructions abbreviated in English letters to represent the operation to be performed by the microprocessor are

called mnemonics.
 Assembly language programs must be translated into machine code by a program called assembler.
 Assembly language is referred to as a low-level language because it deals directly with the internal structure of

the microprocessor.
 High level language like C, BASIC, Java etc. can also be used for programming.
 High level language is converted into machine code by a program called compiler.

Structure of Assembly Language:
 An assembly language program consists of a number of assembly language instructions used to tell the CPU

what to do.
 It also contains instructions giving direction to the assembler called directives.
 For example, MOV, ADA instructions are commands to the CPU whereas ORG, END are directives to the

assembler. ORG followed by an address tells the assembler to place the op-code at that memory location while
END indicates the end of the source code.

 An assembly language instruction consists of five fields:

[label:] mnemonic [destination operand] [source operand] [;comment]

 Brackets indicate that a field is optional and not all lines have them. Brackets should not be typed in.
 The label field allows the program to refer to a line of code by name. There are rules for writing the label like

type & maximum number of characters, starting characters etc. which is assembler specific.
 The assembly language mnemonic together with the operands forms the command for the CPU. For example

MOV A, B. MOV is the mnemonic, which is the abbreviation of data movement. The operands are supplied by
A and B registers. The data from source register B moves to destination register A.

 The comment field begins with a semicolon. Comments may be at the end of a line or on a line itself. The
assembler ignores comments, but they should be present to make the program understandable to others and at a
later time.

Assembling and running of an 8085A program:
 A machine can only understand machine language. So assembly language program is to be translated back into

machine language. Human for convenience uses assembly language.
 Assembly language program is time consuming and difficult, if not impossible, to translate into machine

language manually.
 A PC based program called an assembler can do the same instantaneously. It takes an assembly language

program as input, and produces an object file having extension .obj for machine codes.
 The assembly language file can be written in any EDITOR program like DOS EDIT, WINDOWS NOTEPAD

etc. which saves the file in ASCII format having extension .asm.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 29

Intel 8085 Microprocessor

 Program can also be written in high level languages like ‘C’, BASIC, PASCAL. An interpreter program or a
compiler is used to translate the same into machine codes.

 All the object files created by assembler or compiler can then be combined together to form a single machine
language program by another program called linker.

 The total flow diagram of machine language program development is depicted below.
 An Assembler produces a listing file having extension .lst containing the original assembly language

instructions and the corresponding binary codes. It also reports for any error encountered during conversion.

 Programs can be developed faster in high level language than assembly language as the high-level language
uses higher building blocks. However a program written in high level language usually occupies more space in
memory and takes more time to execute than that developed by assembly language.

 Programs that involve a lot of hardware-control are normally written in assembly language.

Program Development Steps:
Defining the problem
The first step in writing a program is to write down the operations to be done by the program and the order of
executing them. An example of a simple problem may be
1. Read temperature from thermocouple sensor
2. Read ambient temperature from an ambient sensor
3. Add correction for ambient temperature
4. Save result in memory

Prof. (Dr.) Saibal Pradhan, CEMK Page - 30

test.hex

Other obj files

test.obj

test.lst

test.asm

EDITOR
PROGRAM

ASSEMBLER
PROGRAM

LINKER
PROGRAM

Load into:
Simulator for

debugging
µP Trainer KIT for

checking
EPROM to run the

System.

Steps to create a program

Intel 8085 Microprocessor

For a program as simple as this the four actions desired are very close to the assembly statements. However, for
more complex problem we need to develop more extensive outline of the problem so that the actions can be replaced
by assembly language statements.

Representing Program Operations
The formula or sequence of operations used to solve a problem is called algorithm. An algorithm can be written
using graphic shapes called flowcharts. Algorithm can also be written by pseudocodes using standard program
structures.

FLOWCHARTS
Different graphic shapes are used to represent different types of operations. The figure below shows some of the
commonly used graphic shapes:

Prof. (Dr.) Saibal Pradhan, CEMK Page - 31

PROCESS DECESIO
N

?

INPUT/
OUTPUT START

SUB
ROUTINE TERMINATION

CONNECTOR OFF-PAGE CONNECTOR

Figure: Flowchart symbols

Intel 8085 Microprocessor

Figure below shows a flowchart for a program to read 24 data samples from a thermocouple sensor at an interval of
1 hour.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 32

YES

NO

START

READ VALUE
FROM AMB.

SENSOR

READ VALUE
FROM SENSOR

ADD THE
TWO

STORE THE
RESULT IN
MEMORY

24
SAMPL

ES
?

STOP

WAIT 1
HOUR

Intel 8085 Microprocessor

PSEUDOCODES
 Flowchart symbols are space consuming and are normally not used for large programs. Instead English like

statements called pseudo codes are used to represent the algorithm of the program.
 Three basic operations viz. Sequence, Decision, and Iteration can represent the operations of any desired

problem.
 Sequence represents a series of actions
 Decision means choosing between two alternative actions
 Repetition means repeating a series of actions for a number of time
 Three to seven standard structures can represent all the operations in a typical program
 These standard structures are:

1. SIMPLE SEQUENCE
2. IF-THEN-ELSE
3. IF-THEN
4. CASE expressed as nested IF-THEN-ELSE
5. CASE
6. WHILE-DO LOOP
7. REPEAT UNTIL

Example of different cooking in different days of the week in the students’ Hostel using Flow Chart and Pseudo
Codes:

Pseudo Codes

IF MONDAY THEN
MAKE MUTTON MEAL

ELSE IF TUESDAY THEN
MAKE VEG MEAL

ELSE IF WEDNESDAY THEN
MAKE CHICKEN MEAL

:
:
:

ELSE IF SUNDAY THEN
MAKE SPECIAL MEAL

Prof. (Dr.) Saibal Pradhan, CEMK Page - 33

Intel 8085 Microprocessor

Flow Chart:

Prof. (Dr.) Saibal Pradhan, CEMK Page - 34

MUTTON
MEAL

MONDAY ?

TUESDAY
?

SUNDAY
?

Y

Y N

CHICKEN
MEAL

Y
N

SPECIAL
MEAL

Intel 8085 Microprocessor

Assembly Language Programming:
Flow Chart for transferring block of bytes from one area of memory to another

;--
;8085 Program to transfer a number of bytes from one place to another
;in memory (small string having 255 or less elements)
;--

ORG 8000H
START: LXI H,SOUR ;SOURCE MEMORY POINTER

LXI D,DEST ;DESTINATION MEMORY POINTER
MVI B,COUNT ;STRING ELIMENT COUNTER

LOOP: MOV A,M ;MOVE SOURCE ELEMENT INTO ACC
STAX D ;STORE ACC IN DESTINATION

INX H ;SOURCE MEM POINTER INCREMENTED
INX D ;DESTINATION MEM POINTER INCREMENTED

DCR B
JNZ LOOP

ENDP: JMP ENDP
COUNT: EQU 100D
SOUR: EQU 9000H
DEST: EQU 9100H

END

Prof. (Dr.) Saibal Pradhan, CEMK Page - 35

START

Initialize COUNT & POINTERS

Transfer a Byte

Adjust POINTERS

Decrement COUNT

COUNT
= 0?

END

NO

YES

Intel 8085 Microprocessor

;--
;8085 Program to transfer a number of bytes from one place to another
;in memory (large string having 256 or greater no. of elements)
;--

ORG 8000H
START: LXI H,SOUR ;SOURCE MEMORY POINTER

LXI D,DEST ;DESTINATION MEMORY POINTER
LXI B,COUNT ;STRING ELIMENT COUNTER

LOOP: MOV A,M ;MOVE SOURCE ELEMENT INTO ACC
STAX D ;STORE ACC IN DESTINATION

INX H ;SOURCE MEM POINTER INCREMENTED
INX D ;DESTINATION MEM POINTER INCREMENTED

DCX B ;CHECK IF BC=0, IF ZERO
STOP ;EXECUTION.

MOV A,B ;IF NOT ZERO, CONTINUE.
ORA C ;
JNZ LOOP ;

ENDP: JMP ENDP

COUNT: EQU 1000D
SOUR: EQU 9000H
DEST: EQU 9400H

END

Prof. (Dr.) Saibal Pradhan, CEMK Page - 36

Intel 8085 Microprocessor

Flow Chart of a sub routine that moves a block of words from one area of memory to
another

;--
;8085 Program to transfer a number of words from one place to another
;in memory (large string having 256 or greater no. of elements)
;--

ORG 8000H
START: LXI SP,8500H ;SP INITIALIZED

LXI H,SOUR ;SOURCE MEMORY POINTER
LXI D,DEST ;DESTINATION MEMORY POINTER
LXI B,COUNT ;STRING ELIMENT COUNTER

CALL MWORD

ENDP: JMP ENDP

ORG 8200H
MWORD: MOV A,M ;MOVE LOW-ORDER BYTE

STAX D ;
INX H
INX D

Prof. (Dr.) Saibal Pradhan, CEMK Page - 37

MWORD

Transfer low-order byte

Adjust POINTERS

Transfer high-order byte

Decrement COUNT

COUNT
= 0?

RETURN

NO

YES

Adjust POINTERS

Intel 8085 Microprocessor

MOV A,M ;MOVE HIGH-ORDER BYTE
STAX D ;
INX H
INX D
DCX B ;CONTINUE MOVING IF NOT EXHUASTED
MOV A,B ;OTHERWISE STOP.
ORA C ;
JNZ MWORD ;
RET

COUNT: EQU 1000D
SOUR: EQU 9000H
DEST: EQU 9400H

END

Byte Block Exchanges:

;--

Prof. (Dr.) Saibal Pradhan, CEMK Page - 38

START

Initialize COUNT & POINTERS

Exchange bytes

Adjust POINTERS

Decrement COUNT

COUNT
= 0?

END

NO

YESFlow Chart for exchanging a
block bytes from one area of
memory with another

Intel 8085 Microprocessor

;8085 Program to exchange two string stored in memory
;(large string having 256 or greater no. of elements)
;--

ORG 8000H
START: LXI H,SOUR ;SOURCE MEMORY POINTER

LXI D,DEST ;DESTINATION MEMORY POINTER
LXI B,COUNT ;STRING ELIMENT COUNTER

LOOP: MOV C,M ;SOURCE ELEMENT IN REG-C
LDAX D ;DESTINATION ELEMENT IN ACC
MOV M,A ;
MOV A,C ;EXCHANGE ELEMENTS
STAX D ;

INX H
INX D

DCX B ;CONTINUE MOVING IF NOT EXHUASTED
MOV A,B ;OTHERWISE STOP.
ORA C ;
JNZ LOOP ;

ENDP: JMP ENDP

COUNT: EQU 1000D
SOUR: EQU 9000H
DEST: EQU 9400H

END

Word Block Exchanges:
Like word transfer word exchanges are accomplished in a very similar manner. The only
difference between their flow charts is the exchange word instead of exchange byte.
;
;Equates for calling sequence EWORD
;

DEST: EQU 2800H
SOUR: EQU 0000H
COUNT: EQU 0200H
STACK: EQU 7FFFH

LXI D,DEST
LXI H,SOUR
LXI B,COUNT
LXI SP,STACK
CALL EWORD

ENDP: JMP ENDP

;---

Prof. (Dr.) Saibal Pradhan, CEMK Page - 39

Intel 8085 Microprocessor

;Subroutine EWORD
;---

ORG 3000H
EWORD: PUSH B ;SAVE COUNT

MOV C,M ;EXCHANGE LOW-ORDER BYTE
LDAX D
MOV M,A
MOV A,C
STAX D
INX D ;ADJUST POINTERS
INX H
MOV C,M ;EXCHANGE HIGH-ORDER BYTE
LDAX D
MOV M,A
MOV A,C
STAX D
INX D ;ADJUST POINTERS
INX H
POP B ;RESTORE COUNTER
DCX B ;DECREMENT COUNTER
MOV A,B ;TEST COUNTER
ORA C
JNZ EWORD ;IF COUNTER NOT ZERO
RET ;END SUBROUTINE

The subroutine EWORD contains two identical sequences of instructions, one to exchange low-
order bytes and one to exchange high-order bytes. This sequence can be written as a subroutine
improving the readability of the subroutine.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 40

Intel 8085 Microprocessor

EWORD: CALL XCHGB
CALL XCHGB
DCX B
MOV A,B
ORA C
JNZ EWORD
RET

XCHGB: PUSH B
MOV C,M
LDAX D
MOV M,A
MOV A,C
STAX D
INX D
INX H
POP B
RET

Prof. (Dr.) Saibal Pradhan, CEMK Page - 41

EWORD

Decrement COUNT

COUNT
= 0?

RETURN

NO

YES
Flow Chart of a subroutine that
exchanges a block words from one
area of memory with another

XCHGB
Exchange low-
order byte

XCHGB
Exchange low-
order byte

Intel 8085 Microprocessor

8-bit Binary addition and subtraction:
Flow chart of a program that sums a no. of 8-bit data stored in memory
locations.

Assembly Language Programming:
;---
; ADD 100 BYTES OF DATA STORED IN MEMORY AND
; LEAVES THE RESULT IN C & ACC
;
; 9:31 PM 8/19/2004 WRITTEN BY SAIBAL PRADHAN
;---

ORG 8000H

DATA1: EQU 8500H ;DATA BYTES IN MEMORY STARTING AT 8500H

MADD: LXI H,DATA1 ;MEMORY POINTER TO PICK UP DATA
MVI B,100 ;BYTE COUNTER
XRA A ;CLEAR THE SUM & MSB SUM
MOV C,A ;

LOOP: ADD M ;SUM DATA
JNC SKIP
INR C ;ADD CARRY TO MSB SUM

SKIP: DCR B
JNZ LOOP ;REPEAT UNTILL 100 DATA ARE ADDED.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 42

START

Initialize SUM,
COUNT & POINTER

Sum Data

Adjust POINTER

Decrement COUNT

COUNT
= 0 ?

END

NO

YES

Intel 8085 Microprocessor

ENDP: JMP ENDP
END

Flow Chart:
Flow Chart of a program that subtracts bytes of an array from bytes of
another array and store the results in second array.

;---
; SUBTARCT LIST2 DATA FROM LIST1 DATA AND STORE THE RESULT IN LIST2
;
; 10:33 PM 8/19/2004 WRITTEN BY SAIBAL PRADHAN
;---

ORG 8000H

LIST1: EQU 8500H ;ADDRESS OF LIST1
LIST2: EQU 9000H ;ADDRESS OF LIST2

ASUB: LXI H,LIST2 ;LIST2 POINTER
LXI D,LIST1 ;LIST1 POINTER
MVI B,100 ;LOAD COUNTER

LOOP: LDAX D
SUB M
MOV M,A

Prof. (Dr.) Saibal Pradhan, CEMK Page - 43

START

Initialize COUNT
& POINTERS

Subtract Data

Adjust POINTERS

Decrement COUNT

COUNT
= 0 ?

END

NO

YES

Intel 8085 Microprocessor

INX H
INX D
DCR B
JNZ LOOP

ENDP: JMP ENDP

Flow Chart of a program that adds two 4-digit BCD numbers stored in memory.
Store the result also in memory.

;---
; ADD TWO 4-DIGIT BCD NUMBERS STORED IN MEMORY.
; ALSO STORE THE RESULT IN MEMORY
;
; 8:18 PM 8/19/2004 WRITTEN BY SAIBAL PRADHAN
;---

ORG 8000H

DATA1: EQU 8500H ;OP1 IN MEMORY 8500-8501H
DATA2: EQU 8502H ;OP2 IN MEMORY 8502-8503H
RESULT: EQU 8504H ;RESULT IN MEM 8504-8506H

ADDBCD: LXI H,DATA1 ;MEMORY POINTER TO PICK UP OP1
LXI B,DATA2 ;MEMORY POINTER TO PICK UP OP2
LXI D,RESULT ;MEMORY POINTER TO STORE RESULT

Prof. (Dr.) Saibal Pradhan, CEMK Page - 44

START

Initialize
POINTERS

ACC = LB of OP1

ADD LB of OP2
with ACC

END

Adjust ACC for
Decimal addition

Increment
POINTERS

ACC = HB of OP1

ADC HB of OP2
with ACC

Adjust ACC for
Decimal addition

Store the LB of
result

Store the HB of
result

Intel 8085 Microprocessor

LDAX B ;LOAD 1ST BYTE OF OP2 IN ACC
ADD M ;1ST TWO DIGITS OF OP1 & OP2 ARE ADDED
DAA ;ADJUST FOR BCD ADDTION
STAX D ;STORE THE 1ST TWO DIGITS OF THE RESULT

INX H ;
INX B ;INCREMENT POINTERS TO ADD 2ND BYTES
INX D ;

LDAX B ;
ADC M ;2RD & 4TH DIGITS OF OP1 & OP2 ARE ADDED
DAA ;AND ADJUSTED FOR BCD
STAX D ;STORE THE 2ND BYTE OF THE RESULT

INX D ;
MVI A,00H ;5TH DIGIT OF THE RESULT IS PROCESSED
ACI 00H ;AND STORED IN MEMORY.
STAX D ;

PEND: JMP PEND

Prof. (Dr.) Saibal Pradhan, CEMK Page - 45

Intel 8085 Microprocessor

Problems:

Develop flow charts and 8085 Assembly Language Programs (ALP) for
the following problems

--
1. Write an ALP to add two 16-bit numbers already stored in memory

locations 2000H and 2002H respectively. Justify the length of
the result and store it at memory starting at 2004H.

2. Write an ALP to subtract two 16-bit numbers already stored in
memory locations 2010H and 2012H respectively. Justify the
length of the result and store it in memory starting at 2014H.

3. Write an ALP to multiply two unsigned numbers.
4. Write an alp to multiply two signed numbers.
5. Repeat problems 3 and 4 for division.
6. A byte is stored at memory location 2007H. Write an ALP to

separate the two nibbles and store ls-nibble and ms-nibble in
2008H and 2009H respectively.

7. Write an ALP to clear the memory ranging 2010H to 204FH.
8. Write an ALP to add the contents of memory locations starting at

2051H. The no. of data is given in memory location 2050H. Store
the result in BC register pair.

9. Write an ALP to add the first 10 prime numbers.

Solutions:

1. Write an ALP to add two 16-bit numbers already stored in memory
locations 2000H and 2002H respectively. Justify the length of the
result and store it at memory starting at 2004H.

Addition of two 16-bit data (unsigned say) may result a 17-bit
answer which requires three memory locations for its storage.
8085 can add two 8-bit data by using ADD instruction. ADD requires
one of the operands to be kept in ACC and other may be in any 8-bit
register or it may be an immediate number also. 9-bit result will be
stored in ZF plus ACC. So whole addition will be in two steps, lower
two bytes of the operands will be added first and then the upper
bytes taking the carry of the first addition, if any. Carry of the
second addition will be the 17th bit of the result.
It can also add two 16-bit data using DAD instruction which requires
one operand to be stored in HL and the other in any of the four 16-
bit registers (HL, BC, DE and SP). 17-bit result will be available
in CF plus HL.

A. Using ADD instruction

LXI H, 2002H ;HL points 2nd operand
LXI B, 2004H ;BC points result
LDA 2000H ;ls-byte of 1st operand is taken in ACC
ADD M ;ls-byte of 2nd operand is added with ACC
STAX B ;ls-byte of the result is stored

Prof. (Dr.) Saibal Pradhan, CEMK Page - 46

Intel 8085 Microprocessor

INX H ;Pointers are incremented for next byte
INX B ;

LDA 2001H ;ms-byte of the 1st operand is taken in ACC
ADC M ;ms-bytes of the operands are

added ;considering the previous carry
STAX B ;2nd byte of the result byte is stored

INX B

MVI A, 00H ;Carry of the 2nd addition is stored as 3rd
ADC A ;byte of the result.
STAX B ;
HLT

B. Using DAD instruction
LHLD 2000H ;1st operand is taken in HL
XCHG ;1st operand is shifted in DE from HL
LHLD 2002H ;2nd operand is taken in HL
DAD D ;They are added and HL stores the first 16
SHLD 2004H ;bit of the result which is stored in 2004H

;and 2005H
MVI A, 00H ;
ADC A ;17th bit of the result is taken in ACC and
STA 2006H ;finally stored in 2006H
HLT

Important!!
For 16-bit signed addition, final carry to be considered as sign
bit; accordingly the 3rd byte to be made either FFH for CF=1 or
00H for CF=0.

2. Write an ALP to subtract two 16-bit numbers already stored in
memory locations 2010H and 2012H respectively. Justify the length
of the result and store it in memory starting at 2014H.

As 8085 can only subtract two 8-bit data, we have to do it in two
steps. The borrow (CF), if any, after first subtraction to be
considered during the second subtraction. The final borrow to be
considered as the sign bit and to be properly stored in the 3rd byte.

LXI H, 2012H ; HL points 2nd operand
LDA 2010H ; ls-byte of 1st operand is in Acc
SUB M ; Acc <- ls-byte of op1 – ls-byte of op2
STA 2014H ; RESULT STORED

INX H ; ms-bytes are subtracted and stored
LDA 2011H ;
SBB M ;
STA 2015H ;

Prof. (Dr.) Saibal Pradhan, CEMK Page - 47

Intel 8085 Microprocessor

MVI A, 00H ; If CF=0, 3rd byte of the result is 00H
JNC SKIP ; and if CF=1, it is FFH
MVI A, FFH ;
SKIP: STA 2016H ;
HLT

3. Write an ALP to multiply two unsigned numbers.

We will write this program in a subroutine form as it may be used in
different parts of a main routine. Let us consider the numbers to be
multiplied are passed to the subroutine through registers B and C
and the subroutine will return the 16-bit result through BC register
pair.

.ORG 2000H
MAIN: LXI SP, 8000H ; STACK POINTER INITIALIZED

LDA 3000H ; ORIGINALLY OPERANDS WERE IN MEMORY AT
MOV B, A ; 3000H AND 3001H. THEY ARE PASSED
LDA 3001H ; THROUGH REG B AND REG C BEFORE THE
MOV C, A ; SUBROUTINE IS CALLED.
CALL MUL8
.
.
.
.

MUL8: PUSH PSW
PUSH D

MVI A, 00H ; Check for zero operands. If one or both
ORA B ; operands are zero, result will be zero.
JZ ZERO ;
MVI A, 00H ;
ORA C ;
JNZ NEXT ;

ZERO: LXI B, 0000H ;
JMP STOP ;

NEXT: MVI A, 00H
MOV D, A

AGAIN: ADD B
JNC SKIP
INR D

SKIP: DCR C
JNZ AGAIN
MOV C, A
MOV B, D

STOP: POP D

Prof. (Dr.) Saibal Pradhan, CEMK Page - 48

Intel 8085 Microprocessor

POP PSW
RET

4. Write an alp to multiply two signed numbers.

For signed multiplication, basically we have to multiply the
magnitudes of two numbers and the sign of the result will be
positive if operands are of same signs and negative if they are of
opposite signs.
As the range of 8-bit sign number system is -128 to +127, the range
of the result will be -128 x +127 (-16256D or C080H)to -128 x -128
(+16384D or 4000H) which can be expressed in 2’s complement 16-bit
format.

.ORG 2000H
MAIN: LXI SP, 8000H ; STACK POINTER INITIALIZED

LDA 3000H ; ORIGINALLY OPERANDS WERE IN MEMORY AT
MOV B, A ; 3000H AND 3001H. THEY ARE PASSED
LDA 3001H ; THROUGH REG B AND REG C BEFORE THE
MOV C, A ; SUBROUTINE IS CALLED.
CALL SMUL8
MOV A, C
STA 3002H
MOV A, B
STA 3003H
.
.
.

SMUL8: PUSH PSW
PUSH D

MVI D, 00H ; This block determines sign of the result
MOV A, B ; D=0 for result to be positive
XRA C ;
ANI 80H
JZ POS
MVI D, 01H ; D=1 for result to be negative

POS: MOV A, B ; Checking the sign of reg B. If it is
ORI 00H ; negative it is replaced by its magnitude
JP BPOS
CMA
INR A
MOV B, A

BPOS: MOV A, C
ORI 00H
JP CPOS
CMA
INR A

Prof. (Dr.) Saibal Pradhan, CEMK Page - 49

Intel 8085 Microprocessor

MOV C, A

CPOS: CALL MUL8
MOV A, B ; if result is zero, BC = BC
ORA C
JZ RESPOS

MOV A, D ; If result is positive BC = BC
ORI 00H
JZ RESPOS

; If result is negative, BC is replaced by its 2’s complement value

MOV A, B ;
CMA ;
MOV B, A ; 1’s complement of B

MOV A, C
CMA
INR A
MOV C, A ; 2’s complement of C

MVI A, 00H ; Carry, if any, be added with B’s
ADC B ; complement
MOV B, A

RSEPOS: POP D
POP PSW
RET

MUL8: PUSH PSW
PUSH D

MOV A, B ; Check for zero operands. If one or both
ANA C ; operands are zero, result will be zero.
JNZ NEXT

ZERO: LXI B, 0000H ;
JMP STOP ;

NEXT: MVI A, 00H ; Unsigned multiplication between two
MOV D, A ; non-zero 8-bit data by the method of

AGAIN: ADD B ; repeated addition. Carry generated, if
JNC SKIP ; any, is taken care of in the next byte
INR D

SKIP: DCR C
JNZ AGAIN
MOV C, A
MOV B, D

STOP: POP D

Prof. (Dr.) Saibal Pradhan, CEMK Page - 50

Intel 8085 Microprocessor

POP PSW
RET

5. Repeat problems 3 and 4 for division.

Try of your own to solve following the solutions of multiplications.

6. A byte is stored at memory location 2007H. Write an ALP to
separate the two nibbles and store ls-nibble and ms-nibble in
2008H and 2009H respectively.

.ORG 2000H
LDA 2007H ; data is taken in Acc
MOV B, A ; a copy is placed in Reg B
ANA 0FH ; ms-nibble is masked to have the ls-nibble
STA 2008H ; ls-nibble is stored in 2008H

MOV A, B ; data is again taken in Acc
RRC ; Acc is rotated right 4 times to have
RRC ; ms-nibble in place of ls-nibble
RRC
RRC
ANA 0FH ; ms-nibble is masked
STA 2009H ; original ms-nibble is stored in 2009H
HLT

7. Write an ALP to clear the memory ranging 2010H to 204FH.

In this problem 64 memory locations to be cleared starting from
2010H to 204FH.

.ORG 2000H
LXI H, 2010H
MVI C, 64H
XRA A

LOOP: MOV M, A
INX H
DCR C
JNZ LOOP
HLT

8. Write an ALP to add the contents of memory locations starting at
2051H. The no. of data is given in memory location 2050H. Store
the result in BC register pair.

.ORG 3000H
LXI H, 2050H
MOV C, M ; no of data to be added is taken in Reg C
XRA A ; Acc is cleared for addition
MOV B, A ; Reg B is also cleared to have carry

REPEAT: INX H

Prof. (Dr.) Saibal Pradhan, CEMK Page - 51

Intel 8085 Microprocessor

ADD M
JNC SKIP
INR B

SKIP: DCR C
JNZ PEPEAT
MOV C, A ; BC pair holds the result
HLT

9. Write an ALP to add the first 10 prime numbers.

The problem can be solved in two steps. The first routine will find
the first 10 prime numbers and stored them in memory and the second
routine will add them up and store the result.
The second routine is exactly similar to that of problem 8. Try to
write the first routine of your own.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 52

Intel 8085 Microprocessor

Problems:

Develop flow charts and 8085 Assembly Language Programs (ALP) for
the following problems

--

1. Write an ALP to add the odd numbers between 50 to 70.
2. Write an ALP to find the maximum in a given series of numbers

starting from 2051H. The length is given in 2050H.
3. Write an ALP to copy a block of 100 data bytes starting from

2050H at 2100H.
4. Write an ALP to shift a block of data between 2600H - 261FH to

the block starting at 2600H.
5. Write an ALP to find the no. of negative numbers in an array

stored in memory between 2060H and 207FH.
6. Write an ALP to find the no. of odd numbers in an array stored in

memory between 2060H and 207FH.
7. Write an ALP to find the square of a given number supplied

through Register B.
8. Write an ALP to find the square root of a given number present in

Register B using loop-up table method.
9. Write an ALP to convert hexadecimal digits (0-F) supplied through

register B into 7-segment data using look-up table method.
Assume that the data lines (d0-d7) are connected with the
segments as: a,b,c,d,e,f,g,dp : d0...........d7 and the
7_segment display is common anode type.

10. Repeat problem 15 considering common cathode display.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 53

Intel 8085 Microprocessor

Prof. (Dr.) Saibal Pradhan, CEMK Page - 54

Instruction Reg-
8

Instruction
Decoder

ALU-
8

FlgReg-5
Tmp reg-

8
Accumulator-

8

Timing and Control
CLK GEN CONTROL STATUS DMA RESET

X
1
X
2

Ready
RD
WR

ALE S
0
 S

1
 IO/M

HOL
D

HLD
A

RESET
OUTRESET

IN

CLK
OUT

B reg-8 C reg-8

D reg-8 E reg-8

H reg-8 L reg-8

Stack Pointer-16

Prog Counter-16

Incr/Decr A L-16

Addr. Buffer-8 Data/Addr Buf-8

A8-
A15

AD0-
AD7

8-bit internal data
bus

Interrupt Control

INT
R

INTA
RST5.

5

RST6.
5 RST7.

5

TRA
P

Serial I/O Control

SI
D

SO
D

+5 V
GN
D

Internal Block Diagram of 8085A

Intel 8085 Microprocessor

|--|
| |
| _________ _________ |
_	__/	_		
--> X1	_	1 40	_	Vcc (+5V)
_		_		
--> X2	_	2 39	_	HOLD <--
_		_		
<-- RESET OUT	_	3 38	_	HLDA -->
_		_		
<-- SOD	_	4 37	_	CLK (OUT) -->
_		_ ________		
--> SID	_	5 36	_	RESET IN <--
_		_		
--> TRAP	_	6 35	_	READY <--
_		_ _		
--> RST 7.5	_	7 34	_	IO/M -->
_		_		
--> RST 6.5	_	8 33	_	S1 -->
_		_ __		
--> RST 5.5	_	9 32	_	RD -->
_		_ __		
--> INTR	_	10 8085A 31	_	WR -->
____ _		_		
<-- INTA	_	11 30	_	ALE -->
_		_		
<--> AD0	_	12 29	_	S0 -->
_		_		
<--> AD1	_	13 28	_	A15 -->
_		_		
<--> AD2	_	14 27	_	A14 -->
_		_		
<--> AD3	_	15 26	_	A13 -->
_		_		
<--> AD4	_	16 25	_	A12 -->
_		_		
<--> AD5	_	17 24	_	A11 -->
_		_		
<--> AD6	_	18 23	_	A10 -->
_		_		
<--> AD7	_	19 22	_	A9 -->
_		_		
(Gnd) Vss	_	20 21	_	A8 -->

--

Prof. (Dr.) Saibal Pradhan, CEMK Page - 55

Intel 8085 Microprocessor

Prof. (Dr.) Saibal Pradhan, CEMK Page - 56

Intel 8085 Microprocessor

Timming Diagram (8085)

Timing Diagram is a graphical representation. It represents the execution time taken by each instruction in a
graphical format. The execution time is represented in T-states.

Instruction Cycle:
 The time required to execute an instruction is called instruction cycle.

Machine Cycle:
 The time required to access the memory or input/output devices is called machine cycle.

T-State:
 The machine cycle and instruction cycle takes multiple clock periods.
 A portion of an operation carried out in one system clock period is called as T-state.

MACHINE CYCLES OF 8085:
The 8085 microprocessor has 5 (seven) basic machine cycles. They are

1. Opcode fetch cycle (4T)
2. Memory read cycle (3 T)
3. Memory write cycle (3 T)
4. I/O read cycle (3 T)
5. I/O write cycle (3 T)

 Each instruction of the 8085 processor consists of one to five machine cycles, i.e., when the 8085
processor executes an instruction, it will execute some of the machine cycles in a specific order.

 The processor takes a definite time to execute the machine cycles. The time taken by the processor
to execute a machine cycle is expressed in T-states.

 One T-state is equal to the time period of the internal clock signal of the processor.
 The T-state starts at the falling edge of a clock.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 57

Intel 8085 Microprocessor

Opcode fetch machine cycle of 8085 :
 Each instruction of the processor has one byte opcode.
 The opcodes are stored in memory. So, the processor executes the opcode fetch machine cycle to fetch

the opcode from memory.
 Hence, every instruction starts with opcode fetch machine cycle.
 The time taken by the processor to execute the opcode fetch cycle is 4T.
 In this time, the first, 3 T-states are used for fetching the opcode from memory and the remaining T-

states are used for internal operations by the processor.

Memory Read Machine Cycle of 8085:
 The memory read machine cycle is executed by the processor to read a data byte from memory.
 The processor takes 3T states to execute this cycle.
 The instructions which have more than one byte word size will use the machine cycle after the opcode

fetch machine cycle.

Memory Write Machine Cycle of 8085:

Prof. (Dr.) Saibal Pradhan, CEMK Page - 58

http://www.8085projects.info/images/Timing-Diagram-Pic3-pic39.png

Intel 8085 Microprocessor

 The memory write machine cycle is executed by the processor to write a data byte in a memory
location.

 The processor takes, 3T states to execute this machine cycle.

I/O Read Cycle of 8085:
 The I/O Read cycle is executed by the processor to read a data byte from I/O port or from the

peripheral, which is I/O, mapped in the system.
 The processor takes 3T states to execute this machine cycle.
 The IN instruction uses this machine cycle during the execution.

I/O Write Cycle of 8085:
 The I/O write machine cycle is executed by the processor to write a data byte in the I/O port or to a

peripheral, which is I/O, mapped in the system.
 The processor takes, 3T states to execute this machine cycle.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 59

http://www.8085projects.info/images/Timing-Diagram-Pic5-pic41.png

Intel 8085 Microprocessor

Timming Diagram of 8085 Instructions
 The 8085 instructions consist of one to five machine cycles.
 Actually the execution of an instruction is the execution of the machine cycles of that instruction in the

predefined order.
 The timing diagram of an instruction ate obtained by drawing the timing diagrams of the machine cycles

of that instruction, one by one in the order of execution.

TIMING DIAGRAM OF 8085 INSTRUCTIONS
Timing diagram for STA 526AH.

 STA means Store Accumulator -The contents of the accumulator is stored in the specified
address(526A).

 The opcode of the STA instruction is said to be 32H. It is fetched from the memory 41FFH(see fig). - OF
machine cycle

 Then the lower order memory address is read(6A). - Memory Read Machine Cycle
 Read the higher order memory address (52).- Memory Read Machine Cycle
 The combination of both the addresses are considered and the content from accumulator is written in

526A. - Memory Write Machine Cycle
 Assume the memory address for the instruction and let the content of accumulator is C7H. So, C7H from

accumulator is now stored in 526A.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 60

Intel 8085 Microprocessor

Prof. (Dr.) Saibal Pradhan, CEMK Page - 61

http://www.8085projects.info/images/Timing-Diagram-Pic7-pic43.png
http://www.8085projects.info/images/Timing-Diagram-Pic9-pic44.png

Intel 8085 Microprocessor

Timing diagram for INR M
 Fetching the Opcode 34H from the memory 4105H. (OF cycle)
 Let the memory address (M) be 4250H. (MR cycle -To read Memory address and data)
 Let the content of that memory is 12H.
 Increment the memory content from 12H to 13H. (MW machine cycle)

Prof. (Dr.) Saibal Pradhan, CEMK Page - 62

http://www.8085projects.info/images/Timing%20Diagram%20-Pic7c.PNG
http://www.8085projects.info/images/Timing-Diagram-Pic10-pic45.png

Intel 8085 Microprocessor

Timing diagram for MVI B, 43H.

 Fetching the Opcode 06H from the memory 2000H. (OF machine cycle)
 Read (move) the data 43H from memory 2001H. (memory read)

Prof. (Dr.) Saibal Pradhan, CEMK Page - 63

http://www.8085projects.info/images/Timing-Diagram-Pic11-pic46.png

Intel 8085 Microprocessor

Interrupts

Diverting the µP from its normal program flow is called interrupt. External I/O devices may
require the attention of the µP at any point of time. This may be achieved in two ways:

1. to scan or poll them and
2. to use interrupts.

Scanning is just what it sounds like. Each possible event is scanned in a sequence, one at a time.
This is ok for things that don't require immediate action. Interrupts, on the other hand, cause the
current process to be suspended temporarily and the event that caused the interrupt is serviced, or
handled, immediately. The routine that is executed as a result of an interrupt is called the
interrupt service routine (ISR), or recently, the interrupt handler routine.

In the 8085, as with any CPU that has interrupt capability, there is a method by which the
interrupt gets serviced in a timely manner. When the interrupt occurs, and the current instruction
that is being processed is finished, the address of the next instruction to be executed is pushed
onto the Stack. Then a jump is made to a dedicated location where the ISR is located. Some
interrupts have their own vector or unique location where its service routine starts. These are
hard coded into the 8085 and can't be changed (see below).

TRAP - has highest priority and cannot be masked or disabled. A rising-edge pulse will cause a
jump to location 0024H.

RST 7.5- 2nd priority and can be masked or disabled. Rising-edge pulse will cause a jump to
location 7.5 * 8 = 003CH.

This interrupt is latched internally and must be reset before it can be used again.

RST 6.5 – 3rd priority and can be masked or disabled. A high logic level will cause a jump to
location 6.5 * 8 = 0034H.

RST 5.5 – 4th priority and can be masked or disabled. A high logic level will cause a jump to
location 5.5 * 8 = 002CH.

INTR – 5th priority and can be masked or disabled. A high logic level will cause a jump to
specific location as follows:

When the interrupt request (INTR) is made, the CPU first completes its current execution.
Provided no other interrupts are pending, the CPU will take the INTA pin low thereby
acknowledging the interrupt. It is up to the hardware device that first triggered the interrupt, to
now place the op-code of a RST n (n=0 to 7) instruction to the CPU to the service routine after
the PC contains to be pushed in the stack.

You will notice that there are not many locations between vector addresses. What is normally
done is that at the start of each vector address, a jump instruction (3 bytes) is placed, that jumps
to the actual start of the service routine which may be in RAM. This way the service routines can
be anywhere in program memory. The vector address jumps to the service routine. There is more
than enough room between each vector address to put a jump instruction. Looking at the table
above, there are at least 8 locations for each of the vectors except RST 5.5, 6.5, and 7.5. When
actually writing the software, address 0000h will have a jump instruction that jumps around the
other vector locations.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 64

Intel 8085 Microprocessor

Besides being able to disable/enable all of the interrupts at once (DI / EI) ie: except TRAP, there
is a way to enable or disable them individually using the SIM instruction and also, check their
status using RIM.

There are other things about interrupts that we will cover as they come up, but this lesson was to
get you used to the idea of interrupts and what they're used for in a typical system. It’s similar to
the scene where one is standing at a busy intersection waiting for the traffic light to change,
when a person came up and tapped us on the shoulder and asked what time it was. It didn't stop
us from going across the street, it just temporarily interrupted us long enough to tell them what
time it was. This is the essence of interrupts. They interrupt normal program execution long
enough to handle some event that has occurred in the system.

Polling, or scanning, is the other method used to handle events in the system. It is much slower
than interrupts because the servicing of any single event has to wait its turn in line while other
events are checked to see if they have occurred. There can be any number of polled events but a
limited number of interrupt driven events. The choice of which method to use is determined by
the speed at which the event must be handled.

The software interrupts are the instructions RST n, where n = 0 – 7. The value n is multiplied by
8 and the result forms an address that the program jumps to as it vector address ie: RST 4 would
jump to location 4*8 = 32 (20H).

Interrupts and their starting addresses:

SL Name Address Type Priority Maskable
1 RST 0 00H Software -
2 RST 1 08H Software -
3 RST 2 10H Software -
4 RST 3 18H Software -
5 RST 4 20H Software -
6 TRAP 24H Hardware Highest No
7 RTS 5 28H Software -
8 RTS 5.5 2CH Hardware 2nd highest Yes
9 RST 6 30H Software -
10 RST 6.5 34H Hardware 3rd highest Yes
11 RST 7 38H Software -
12 RST 7.5 3CH Hardware 4th highest Yes
13 INTR RTS 0 - 7 Hardware Lowest Yes

Internal organization of the interrupt system:

Prof. (Dr.) Saibal Pradhan, CEMK Page - 65

Intel 8085 Microprocessor

SIM – Set interrupt Mask
7 6 5 4 3 2 1 0

SOD SDE XXX R7.5 MSE M7.5 M6.5 M5.5

Set Mask RST 7.5, RST 6.5 and RST 5.5

Mask Set Enable

Prof. (Dr.) Saibal Pradhan, CEMK Page - 66

RST
7.5

RST
6.5

RST
5.5

TRAP

INTR

D Q

CLR Q

Reset
RST7.5 int recognized

003CH

0034H

002CH

0024H

D Q

R

DI
Reset

Any interrupt acknowledged

EI
Get RST 0-7 from
external Hardware

Mask

Intel 8085 Microprocessor

Reset RST 7.5

Ignored

Serial data enable, if 1, bit 7 is output serial output
data latch

Serial output data; ignored if bit 6 is 0

This is a one byte instruction and can be used for three different purposes

1. To reset RST 7.5 flip-flop. If D4=1 then RST 7.5 is reset.

2. To set mask for RST 7.5, RST 6.5 and RST 5.5 interrupts. Bit D3 is a control bit and

should be made 1 for D2, D1 and D0 to be effective. Logic 0 will enable and 1 will

disable the corresponding interrupts

3. To output serial data. Bit D7 of the accumulator is sent out to the SOD pin if D6 is 1

RIM – Read Interrupt Mask

7 6 5 4 3 2 1 0
SID I 7.5 I 6.5 I 5.5 IE M7.5 M6.5 M5.5

Read Mask RST 7.5, RST 6.5 and RST 5.5: 1 = masked

Interrupt Enable Flag: 1 = enable

Pending Interrupt: 1 = pending

Serial output data

This is a single byte instruction and is used to check for pending interrupts. It performs the three

following functions

1. To read interrupt masks

2. To receive Serial data

3. To identify pending interrupts.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 67

Intel 8086/88 Microprocessor

History of Intel Microprocessors
The Intel introduced 4004, world’s first microprocessor, in early 1970’s. It was a 4-bit microprocessor

and could address 4096 4-bit memory locations. 4004 instruction set contained only 45 instructions. It was

fabricated by the then current state-of-the-art P-channel MOSFET technology. It could execute at the rate of 50

KIPs.

The evolution of 4-bit microprocessor ended with 4040 an upgraded version of 4004. 4040 operated at

higher speed but lacked improvement in word size and addressing capability.

In 1971, Intel introduced 8008, the first 8-bit microprocessor. It could address up to 16K bytes and had

48 instructions. Its small memory size, low speed and instruction set limited its usefulness. Intel appreciated

these limitations and came up with 8080 in 1973 – the first of the modern 8-bit microprocessors. 8080 could not

only address 64K bytes memory and execute more instructions but also it executed them 10 times faster than

8008. In 1978, Intel introduced an updated version of 8080 – the 8085. The 8085 was the last 8-bit general

purpose microprocessor developed by Intel. 8085 executed software even in higher speed. The main advantages

of 8085 are its internal clock generator, internal system controller and higher clock frequency.

Intel 8086/88 Microprocessor
In 1978, Intel released the 8086 microprocessor; a year later, it released the 8088. Both devices were

16-bit microprocessors, which executed instructions in as little as 400 ns (2.5 MIPs). This was a major

improvement in operating speed with respect to 8085. In addition, the 8086/88 addressed 1M bytes memory.

The number of instructions increased from 246 in 8085 to well over 20,000 variations in 8086/88. Note that

these microprocessors are called CISC (complex instruction set computers) because of the number and

complexity of instructions. The other distinct feature found in the 8086/88 was the introduction of a small 6 or 4

bytes instruction cache or queue that pre-fetched a few instructions before they were executed. The queue

sped the operation of many sequences of instructions and proved to be the basis for the much larger instruction

caches found in modern computers.

Dr. Saibal Kumar Pradhan, CEMK Page 1

Intel 8086/88 Microprocessor

The Programming Model
Before a low-level program (assembly and machine language) is written, the internal architecture of the

microprocessor must be known. Program visible internal architecture of 8086/88 microprocessors is shown in

Fig.1 below:

32 bit
names

8-bit
names

16-bit
names

8-bit
names

EAX AH AX AL Accumulator

EBX BH BX BL Base index

ECX CH CX CL Count

EDX DH DX DL Data

ESP SP Stack pointer

EBP BP Base pointer

EDI DI Destination index

ESI SI Source index

EIP IP Instruction pointer

EFGS FLAGS Flags

CS Code Segment

DS Data segment

SS Stack segment

ES Extra segment

FS
GS

Fig.1: The Programming Model of the Intel 8086 through Pentium 4.

The Programming model contains 8 and 16-bit registers. The 8-bit registers are AH, AL, BH, BL, CH, CL, DH

and DL and are referred by these two letter names in instructions. The 16-bit registers are AX, BX, CX, DX, SP, BP,

SI, DI, IP, FLAGS, CS, DS, SS and ES.

Some registers are general purpose or multi-purpose, and some are dedicated and have special purposes.

The multi-purpose registers are AX, BX, CX, DX, BP, DI and SI. These registers hold various data and are used for

almost any purpose as indicated by the program.

Multipurpose Registers
AX (Accumulator): AX can be used as a 16-bit register or AL/AH can be used as 8-bit registers. The accumulator

is used for instructions such as multiplication, division, input and output and some of the adjustment

instructions. For these instructions, the accumulator has a special purpose. AL and AX act as accumulator for 8-

bit and 16-bit operations respectively.

BX (Base index): This register can be addressed as BL, BH or BX. The BX register sometimes holds the offset

address of a memory data.

Dr. Saibal Kumar Pradhan, CEMK Page 2

Intel 8086/88 Microprocessor

CX (Count): CX is a general-purpose register and can be referred as CL, CH or CX. In some instructions, CL or CX

holds the count for repetitive/iterative operations. Instructions that use a count are the repeated string

instructions (REP/REPE/REPNE); and shift, rotate and LOOP instructions. The shift and rotate instructions use CL

and LOOP and repeated string instructions use CX as count.

DX (Data): DX is also a general-purpose register and can be used as DL, DH or DX. For multiplication and division

instructions, DX is used to hold a part of operand/result. DX is also used as I/O pointer.

BP (Base pointer): BP is used to hold the offset address of a memory location in Stack Segment.

DI (Destination index): DI can be used to hold the offset address of a general memory (Data Segment). For string

instructions, it holds the offset address of the destination string in Extra Segment.

SI (Source index): SI can be used to hold the offset address of a general memory (Data Segment). For string

instructions, it holds the offset address of the source string in Data Segment.

Special Purpose Registers
Special purpose registers include Instruction Pointer (IP), Stack Pointer (SP), Flag Register (FLAGS), and

segment registers CS, DS, SS and ES.

IP (Instruction Pointer): IP holds the offset address (in Code Segment) of the next instruction to be executed. It

can be modified by a call or a jump instruction.

SP (Stack Pointer): SP holds the offset address of the stack memory (Stack Segment).

FLAGS: Flags indicate the condition of the microprocessor and control its operations. 8086/88 have a 16-bit flag

register. Different flags for 8086/8088 microprocessor are as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-- -- -- -- O D I T S Z -- AC -- P -- C

Fig.2: Flags of 8086/88 Microprocessor

Flag register has 9 active flags. The first five viz. C (carry), P (Parity), AC (auxiliary carry), Z (zero) and S (sign) are

8085 like flags and the remaining four are new in 8086/8088. They are T (trap), I (interrupt), D (direction) and O

(overflow).

C (Carry): This flag holds the carry after addition and borrow after subtraction.

P (Parity): Parity is logic 0 for odd parity and logic 1 for even parity. Parity is the count of ones in a number

expressed as even or odd. For example, a binary number has four 1s, so the parity is even. A number having no

1s, has the even parity.

AC (auxiliary carry): The auxiliary carry holds the carry after addition or borrow after subtraction between bit

position 3 and 4 of the results. This is used for adjustment of the result for BCD operations.

Dr. Saibal Kumar Pradhan, CEMK Page 3

Intel 8086/88 Microprocessor

Z (zero): This flag indicates whether the result is zero or non-zero. It will be set if the result is zero and reset if

non-zero.

S (sign): Sign flag indicates polarity of the result. Set if negative and reset if positive. So, it is same as the most

significant bit (msb) of the result.

T (trap): The trap flag enables trapping (debugging) through an on-chip debugging feature. If T=1,

microprocessor interrupts after execution of every instruction and goes to a service routine so that the

programmer can verify the contents of registers, memory etc.

I (interrupt): The interrupt flag enables or disables the INTR input pin. If I=1, INTR pin is enabled. The state of the

Interrupt flag can be set or reset by STI (set interrupt flag) and CLI (clear interrupt flag) instructions.

D (direction): The direction flag determines auto increment or auto decrement of SI and DI registers for string

operations. If D=1, the registers are automatically decremented and if D=0, they will automatically be

incremented. STD (set direction) and CLD (clear direction) instructions are used to set and reset this flag.

O (overflow): Overflows occur when sign numbers are added or subtracted. An overflow indicates that the

result has exceeded the capacity of destination register/memory. For example, if 7FH (+127) is added, using an

8-bit addition, with 01H (+1), the result will be 80H (-128) - this is an overflow condition and indicated by the

overflow flag becoming set. For unsigned operation the overflow flag is ignored.

Segment Registers: Though the 8086/88 has 1 MB memory, all are not active at any point of time. The whole

memory is partitioned into 16 segments of 64 KB each. Out of these 16 segments, only 4 segments are active at

a time. The four active memory segments are: (i) Code Segment, an area to keep aside for program codes, (ii)

Data Segment, to store the data generated/to be used by the program, (iii) Stack Segment to keep aside for

stack area and (iv) Extra Segment to store data again. Starting addresses, sometimes called base address, of

these four segments are pointed out by four segment registers CS, DS, SS and ES. Addressing within a segment is

done by supplying the displacement/offset of the memory with respect to this base address through index and

pointer registers viz. SI, DI, BX, SP, BP and IP.

Fig.3 illustrates the segmentation and active segments of memory for 8086/88 microprocessor.

FFFFFH

Code Segment

Dr. Saibal Kumar Pradhan, CEMK Page 4

Intel 8086/88 Microprocessor

60000H

CS=6000H
Stack Segment

DS=3000H 50000H

SS=5000H

ES=1000H
Data Segment

30000H

Extra Segment
10000H

00000H

Fig.3: Memory Segmentation and active segments for 8086/88 microprocessor

Actual address of a memory location is 20-bit wide. But the segment registers can store only 16-bit data. So, a

default 0H is placed at the right of a segment register to indicate the starting address of the corresponding

segment. The 16-bit displacement to point any memory location within a segment is then supplied through

pointer registers or index registers or 8-bit/ 16-bit displacements or any suitable combination of these three.

Thus, the actual 20-bit address can be formed as follows:

20-bit actual address = Segment register x 10H + 16-bit displacement/offset

The 20-bit actual address is called Physical Address (PA), the 16-bit displacement is called Offset address and the

content of the segment register is called the segment address.

An alternative way of representing physical address is the segment base:offset. A segment base and an offset

describe a logical address in 8086/88 microprocessor system.

Default segment and offset combinations: The source of the offset depends on which segment is used for

addressing. For code segment, IP is the default source of the offset address. Thus, CS:IP gives the physical

address of the current instruction to be fetched for execution. For string operations, SI is the source of default

offset for data segment and DI is the source of default offset for extra segment. Other than string operations, SI,

DI and BX are used to supply the offset address for data segment. SP and BP are the default sources of offset

address for stack segment. A provision called the segment override prefix is used to change the segment from

which the variable is accessed. A data is always accessed from the data segment. If one wants to access data

from other segments one must specify the new segment in the instruction itself through segment override

prefix. For example,

MOV AX, [BX] ; Physical Address, PA = DS:BX, default segment is DS

ADD AX, [SI] ; PA = DS:SI, default segment is DS

ADD AX, CS:[BX] ; Example of Segment override prefix, PA = CS:BX

Internal Architecture of 8086/88

Dr. Saibal Kumar Pradhan, CEMK Page 5

Intel 8086/88 Microprocessor

As shown in Fig.4, the internal architecture of 8086/88 is divided into two independent functional units

called Bus Interface Unit (BIU) and Execution Unit (EU). BIU organizes and controls the operations of address and

data buses which include address generation, instruction fetching, data read from memory and IO and data

write to memory and IO devices. Thus, BIU handles all transfer of data and addresses on the bus for Execution

Unit. On the other hand, the Execution Unit tells the BIU where to fetch instructions and data from, decodes

instructions and executes them.

The EU contains the control units which direct the internal operations. A decoder in EU translates the instruction

into a series of actions which EU carries out. EU has a 16-bit Arithmetic and Logic Unit (ALU) which can add,

subtract, AND, OR, XOR, increment, decrement, complement or shift binary numbers.

Dr. Saibal Kumar Pradhan, CEMK Page 6

6

3

5

4

2

1

CS

ES

DS

SS

IP

Addr. Conv.Mechanism

Memory address & Data Bus Interfacing

ALU

AH ALAX

BH BLBX

CH CLCX

DH DLDX

SP

BP

SI

DI

Decoding Circuit

Flags (16)

Timing & Control Circuit

BIU

EU

AD0-AD15AD16-AD19/STATUS

Clock & Control Signal

Intel 8086/88 Microprocessor

Fig.4: Internal Architecture of 8086/88 Microprocessor

While EU decodes or executes an instruction which does not require the use of the buses, the BIU fetches up to

6 bytes for 8086 and 4 bytes for 8088 for the following instructions and stores them in an internal first-in-first-

Dr. Saibal Kumar Pradhan, CEMK Page 7

Intel 8086/88 Microprocessor

out (FIFO) register called queue or cache. After the execution of the current instruction, the EU does not fetch

the next instruction from memory; rather it simply reads it from the internal queue. This is much faster than

instruction fetching from memory. This pre-fetch and queue scheme greatly speeds up the operation of the

8086/88. This fetching of next instruction while the current instruction is executed is called pipelining. The

architecture supporting pipelining is called pipelined architecture.

Microprocessor without Pipelined Architecture

Fetch1 Decode1 Execute1 Fetch2 Decode2 Execute2 Fetch3 Decode3 Execute3

Microprocessor with Pipelined Architecture

BIU Fetch1 Fetch2 Fetch2 Fetch3 Fetch3

EU Decode1 Execute1 Decode2 Execute2 Decode3 Execute3

Save in time

Fig. 5: A comparison of operations of microprocessors having simple and pipelined architecture showing faster

instruction execution in case of pipelined architecture

Dr. Saibal Kumar Pradhan, CEMK Page 8

Intel 8086/88 Microprocessor

Instruction Templates
Number of instructions is huge in 8086/88 and thus it is not possible to provide any concise list of instructions

like 8085 for programmer’s reference. Ways an operand can be expressed in an 8085 instruction is limited, but it

is much larger in case of 8086/88. This leads to a wide variation of each 8086/88 instruction. For example, there

are 32 ways to specify the source operand in an instruction such as MOV CX, source. The source can be any one

of eight 16-bit registers, or a memory location specified by any one of 24 memory addressing modes. If CX is

made source, also there are 32 ways one can express the destination. So MOV instruction, having CX as one of

the operands, can be written in 64 different ways. Likewise, another 64 codes are required for MOV using CL as

source or destination and 64 more codes for MOV with CH as source or destination. Thus, MOV instruction with

CX (including CL and CH) has 192 variants and it is impracticable to provide a list of all possible instructions of

8086/88. Instead, a template for each basic instruction can be used to generate the codes of the instructions of

8086/88. Fig. 6 below describes such a template of MOV instruction:

Byte 1 Byte 2 Byte 3 Byte 4

1 0 0 0 1 0
LOW DISPLACEMENT HIGH DISPLACEMENT

OPCODE D W MOD REG R/M

OR

DIRECT ADDRESS
LOW BYTE

DIRECT ADDRESS
HIGH BYTE

OPCODE – Operation Code
D – Direction TO/FROM REG; 0 = FROM, 1 = TO
W – Byte/Word Data; 0 = Byte, 1 = Word
MOD & R/M (5 bits) – ADDRESSING MODE
REG – REGISTER SELECT

Fig. 6: Coding Template of MOV instruction

Dr. Saibal Kumar Pradhan, CEMK Page 9

Intel 8086/88 Microprocessor

MOD and R/M bit patterns for 8086/88 instructions are shown in Fig. 7. Fig. 8 shows the bit pattern for REG field.

MOD
R/M

00 01 10
11

W=0 W=1

000 [BX]+[SI] [BX]+[SI]+d8 [BX]+[SI]+d16 AL AX

001 [BX]+[DI] [BX]+[DI] +d8 [BX]+[DI] +d16 CL CX

010 [BP]+[SI] [BP]+[SI] +d8 [BP]+[SI] +d16 DL DX

011 [BP]+[DI] [BP]+[DI] +d8 [BP]+[DI] +d16 BL BX

100 [SI] [SI] +d8 [SI] +d16 AH SP

101 [DI] [DI] +d8 [DI] +d16 CH BP

110 d16
(direct address)

[BP] +d8 [BP] +d16 DH SI

111 [BX] [BX]+d8 [BX]+d16 BH DI

MEMORY ADDRESSING REGISTER ADDRESSING

Fig. 7: MOD and R/M bit patterns in instruction template of 8086/88 microprocessor

General Purpose Registers Segment Registers

REG bit pattern 8-bit Registers (W=0) 16-bit Registers (W=16) CODE SEGMENT REGISTER

000 AL AX 00 ES

001 CL CX 01 CS

010 DL DX 10 SS

011 BL BX 11 DS

100 AH SP

101 CH BP

110 DH SI

111 BH DI

Fig. 8: Registers codes

Example-1:

MOV AX, BX => 100010 1 1 || 11 000 011 => 8B C3H ; “TO” REG

-OR- => 100010 0 1 || 11 011 000 => 89 D8H ; “FROM” REG

Example-2:

MOV AX, [BX][SI]1234H =>100010 1 1 || 10 000 000 || 0011 0100 || 0001 0010 => 8B 80 34 12H

The coding template of MOV instruction for segment override prefix is shown in Fig. 9 below. It is a 3-byte code

and an extra byte will be added for new segment before byte1 and byte2 of normal MOV instruction.

Byte 1
Segment Override Prefix

Byte 2 Byte 3

0 0 1 1 1 0 1 0 0 0 1 0 D w

Dr. Saibal Kumar Pradhan, CEMK Page 10

Intel 8086/88 Microprocessor

SEG REG OPCODE MOD REG R/M

Fig. 9: MOV instruction coding template for segment override prefix

Example-3:

MOV CS:[BX],DL => 001 01 110 || 100010 0 0 || 00 010 111 => 2E 88 17H

Addressing Modes
Microprocessors operate on data which are commonly known as operands. Operand in an instruction may be

the content of a register, a memory or it can be a constant. There are numerous ways to express them in an

instruction and are known as data-addressing modes. Similarly, program address, in case of control transfer

instructions, may be expressed in different ways giving rise to program memory-addressing modes.

Data-Addressing Modes: The five fields of an assembly language instruction are as shown in Fig.10.

[Label:] OPCODE [Destination] [Source] [; Comments]

Fig. 10: General format of an assembly language instruction.

The fields within brackets are optional, so an instruction may not have all the fields. “Label” is used to refer an

instruction from other parts of an assembly language program and is ended with a colon. It is case sensitive. No

other fields are case sensitive. “Opcode” is the short form of the operation to be performed by the

microprocessor and sometimes called “Mnemonic” meaning memory-aid as it helps us to remember the

operation. “Destination” and “Source” are the two operands and indicate the data flow direction. Data flows

from source to destination. “Comment” always starts with a semicolon. Assembler always ignores anything

written after a semicolon. Comment is used for documentation purpose only which helps us to understand the

purpose of use an instruction or a group of instructions or the whole program in future. A comment may appear

either at the end of an instruction or even in a new line.

Various types of Data-addressing modes are as follows:

1. Register Addressing It refers different ways of expressing registers, byte or word, in an instruction. For
example,
MOV AX, BX ; This instruction copies the content of BX register to AX register
ADD AL, CL ; This instruction adds the contents of AL and CL registers and puts
the result in AL

2. Immediate
Addressing

It refers that the source is a constant data often called an immediate data as it
appears in memory immediately after the opcode. For example,
MOV AL, 12H ; This instruction places 12H in AL register
ADD AX, 1234H ; This instruction adds 1234H with AX and accumulates result in AX

3. Memory Addressing It refers different ways of indicating a memory location storing an operand in an
instruction. Memory location may be indicated directly along with the opcode. Then it

Dr. Saibal Kumar Pradhan, CEMK Page 11

Intel 8086/88 Microprocessor

is called direct addressing. It may also be expressed indirectly through a pointer
register BX, BP, SP, SI, DI, DX or their suitable combinations as indicated in Fig.7 giving
rise to different indirect addressing.
Note: Both the operands in an instruction can never be memory except string
instructions.

3A. Direct Addressing Offset address of the memory operand is present in the instruction itself. For
example,
MOV AL, [1234H] ; Here a byte data is copied from memory in data segment having
offset address 1234H

3B. Register-Indirect
Addressing

In this case, offset address of a memory operand is supplied through one of index or
base registers i.e. SI, DI, BX. For example,
MOV CL, [BX], this instruction loads the content of a memory location in data segment
whose offset address is kept BX into CL. Other examples are OR AX, [SI]; ADD [DI], DX;
INC WORD PTR [BX] etc.

3C. Base-plus-index
addressing

Base-plus-index addressing refers a memory operand addressed by a base register (BP
or BX) plus an index register (SI or DI). For example,
MOV AL, [BX][SI], this instruction copies the content of a memory location in data
segment whose offset address is the sum of BX and SI. Other examples are ADD AX,
[BP][DI], INC BYTE PTR [BX][DI] etc.

3D. Register relative
Addressing

Register relative addressing refers a memory operand whose offset address is
supplied through an index or a base register plus a displacement, 8-bit or 16-bit. For
example,
MOV AH, [BX]12H ; ADD AX, [SI]1000H etc.

3E. Base relative-plus-
index addressing

In this case, the offset of the memory operand is supplied through a base register plus
an index register plus an 8-bit or a 16-bit displacement. For example,
MOV AX, [BX][SI]12H ; ADD BX, [BP][SI]1234H etc.

Program Memory Addressing: It is used with JMP (jump) and CALL instructions and is of three distinct forms –

direct, relative and indirect.

Direct Program
Memory Addressing

In case of direct program memory addressing, JMP and CALL instructions take the
execution control beyond the current code segment called inter-segment CALL or
JMP. In this case, the address is stored with the opcode by two 16-bit values, one for
code segment and the other for offset. The direct jump or call are often called far
jump or call. For example,
HERE: JMP FAR BEGIN, in this case, the labels HERE and BEGIN are in different code
segments, the machine code of this instruction considering HERE as 2000:100H and
BEGIN as 5000:1234H is:
 Opcode Offset Low Offset High Segment Low Segment High
2000:100H EA 34 12 00 50
2000:105H

Dr. Saibal Kumar Pradhan, CEMK Page 12

Intel 8086/88 Microprocessor

Relative Program
Memory Addressing

The term relative means “relative to the instruction pointer (IP)”. Therefore, the
displacement (8-bit or 16-bit signed numbers) given in the instruction will be added
with IP to determine the new value of IP where from the next instruction will be taken
for execution. Relative jump and call are always intra-segment. 8-bit displacement can
take the execution backward by 128 bytes and forward by 127 bytes and are known
as short jump and call. On the other hand, 16-bit displacement can take the control
32768 bytes backward and 32767 bytes forward with respect to current IP position
and are called near jump and call. For example,

1000:0100 B8 00 20 BEGIN: MOV AX, 2000H
1000:0103 BB 00 03 MOV BX, 300H
1000:0106 B2 00 MOV DL,00H
1000:0108 05 23 F1 ADD AX, F123H
1000:010B 73 02 JNC SKIP ; Short Jump, 2 bytes forward
1000:010D FE C2 INC DL
1000:010F 89 07 SKIP: MOV [BX],AX
1000:0111 88 57 02 MOV [BX]02H,DL
.
.
1000:0200 E9 FD FE JMP BEGIN ; Near Jump, 258B backward
1000:0203 EA 00 01 00 10 JMP FAR BEGIN ; Inter-segment Jump

Note: Conditional jumps are short jumps.

Indirect Program
Memory Addressing

In case of indirect program memory addressing, jump and call locations are supplied
indirectly through registers or memory pointed out by registers. For example,

1000:0100 B8 00 02 BEGIN: MOV AX, 200H
1000:0103 BB 34 12 MOV BX, 1234H
1000:0106 FF E0 JMP AX ; IP modified by AX
1000:0108 FF 27 JMP [BX] ; IP modified by content of
 ; memory DS:BX
1000:010A FF 67 12 JMP [BX]12H ; DS:BX+12H

Dr. Saibal Kumar Pradhan, CEMK Page 13

Intel 8086/88 Microprocessor

Dr. Saibal Kumar Pradhan, CEMK Page 14

Intel 8086/88 Microprocessor

Finding the Right Instruction
For finding the right instruction in right place we must know the instructions in groups of functional operations

like data transfer operations, logical operations, arithmetic operations, bit manipulation operations, string

operations, program execution transfer operations, processor control operations etc. The important instructions

under these groups are as follows:

MNEMONIC WITH OPs DESCRIPTIONS OP1 (DES OP) OP2 (SOU OP) OPERATION/EXAMPLE

DATA TRANSFER GROUP:
General-purpose byte or word transfer instructions:

MOV Copy bytes/words m8, r8, m16, r16 m8, r8, m16, r16,
d8, d16

OP1OP2

PUSH Save a word on stack r16, m16 - (SP) OP1

POP Copy word from stack r16, m16 - OP1  (SP)

XCHG Exchange m8, r8, m16, r16 m8, r8, m16, r16 OP1 OP2

XLAT Translate using look-up
table

- - AL  (BX+AL); BX will not be
modified.

Simple input and output port transfer instructions:

IN Read data from a port AL, AX 8p8, 8p16, DX AL  8p8/DX
AX  8p16/DX

OUT Write data to a port 8p8, 8p16, DX AL, AX 8p8/DX AL
8p16/DX AX

Special Address transfer instructions:

LEA Load effective address
(offset addr.) in register

R16 m16

Example of LEA:
1000:0100 3412 DATA1: DW 1234H
1000:0102 CDAB DATA2: DW ABCDH

1000:0104 2E 8D 36 00 01 BEGIN: LEA SI, DATA1 ; SI = 0100H
1000:0109 BE 02 01 MOV SI, OFFSET DATA2 ; SI = 0102H

LDS/LES Loads DS/ES and mem
ptr with the 32-bit
content of data
segment memory at
m16

BX, BP, SI, DI m16

Example of LDS/LES
DATA1: DW 1234H, 2000H
DATA2: DW ABCDH, 3000H

BEGIN: LES SI, DATA1 ; ES=2000H, SI=1234H
LDS DI, DATA2 ; DS=3000H, DI=ABCDH

Flag transfer instructions:

LAHF Load lower byte of Flag
register to AH register

SAHF Store content of AH
register to lower byte
of Flag Register.

PUSHF Push Flag Register in
Stack.

POPF Retrieve Flag Register
from Stack.

ARITHMETIC INSTRUCTIONS

Dr. Saibal Kumar Pradhan, CEMK Page 15

Intel 8086/88 Microprocessor

Addition instructions:

ADD Arithmetic Addition of
two byte/word
operands

m8, r8, m16, r16 m8, r8, m16, r16,
d8, d16

OP1OP1+OP2
(Both the operands cannot be
memory)

ADC Arithmetic Addition of
two byte/word
operands plus previous
carry

m8, r8, m16, r16 m8, r8, m16, r16,
d8, d16

OP1OP1+OP2+CY
(Both the operands cannot be
memory)

INC Increment operand by
1

m8, r8, m16, r16 OP1  OP1+1

AAA Adjust Accumulator
after ASCII addition

After adding ASCII data, AAA
gives correct unpacked BCD
result.

Example of AAA:
Assume AL=0011 1000, ASCII 8
 BL=0011 0111, ASCII 7
ADD AL, BL ; AL=0110 1111 = 6EH which is incorrect BCD, Correct one should be 15
AAA ; AL=0000 0101, Unpacked BCD 5, CF=1 indicates the answer is 15 decimal.

DAA Adjust Accumulator
after BCD addition

After adding packed BCD data
(one in AL), DAA gives correct
packed BCD result in CF & AL

Subtraction instructions:

SUB Subtraction between
operands

m8, r8, m16, r16 m8, r8, m16, r16,
d8, d16

OP1OP1-OP2
(Both the operands cannot be
memory)

SBB Subtraction between
operands minus
borrow (Carry flag).

m8, r8, m16, r16 m8, r8, m16, r16,
d8, d16

OP1OP1-OP2-CY
(Both the operands cannot be
memory)

DEC Decrement operand by
1

m8, r8, m16, r16 OP1  OP1-1

NEG Finds 2’s complement m8, r8, m16, r16 OP12’s Complement of OP1

CMP Compares between
two operands by
subtracting op2 from
op1. Result is not
stored, only flags are
modified.

m8, r8, m16, r16 m8, r8, m16, r16,
d8, d16

FLAGS OP1-OP2

AAS Adjust Accumulator after ASCII subtraction

DAS Adjust Accumulator after BCD subtraction

Multiplication Instructions:

MUL Multiplication between
two unsigned 8-bit/16-
bit data, one stored in
AL/AX and other in
register/memory.

m8, r8, m16, r16 AX  AL*OP1 or
DX-AX  AX*OP1

IMUL Multiplication between
two signed 8-bit/16-bit
data, one stored in
AL/AX and other in
register/memory.

m8, r8, m16, r16 AX  AL*OP1 or
DX-AX  AX*OP1

AAM Adjust result after multiplying two ASCII digits (one must in AL) and gives unpacked BCD results in AX.

Division Instructions:

DIV Divides an unsigned 16-
bit/32-bit number by
an unsigned 8-bit/16-
bit number. Dividend is
at AX/DX-AX and
divisor in r8, m8/r16,

r8, r16, m8, m16 AX ÷ OP1 (r8/m8),
AL=Quotient, AH=remainder
 or
DX-AX ÷ OP1 (r16/m16),
AX=Quotient, DX=remainder

Dr. Saibal Kumar Pradhan, CEMK Page 16

Intel 8086/88 Microprocessor

m16. Remainder will be
in AH/DX.

IDIV -do- dealing with
signed integers

AAD Unlike other adjustment instructions, this instruction appears before a division. It converts an
unpacked 2-digit BCD number in AX into a 16-bit binary number which is then divided by an unpacked
number to generate a single digit quotient in AL and remainder in AH.

CBW It converts a signed byte data in AL into a signed word data in AX (2’s complement form). This is useful
when data lengths are not as per the requirements of IDIV and IMUL instructions.

CWD It converts a signed word data in AX into a signed double word data in DX-AX (2’s complement form).
This is useful when data lengths are not as per the requirements of IDIV and instruction.

BIT MANIPULATION INSTRUCTIONS

Logical Instructions:

NOT Finds 1’s complement r8, r16, m8, m16

AND Finds bit-by-bit logical
AND operation
between two operands

m8, r8, m16, r16 m8, r8, m16, r16,
d8, d16

OP1  OP1 . OP2

OR Finds bit-by-bit logical
OR operation between
two operands

m8, r8, m16, r16 m8, r8, m16, r16,
d8, d16

OP1  OP1 + OP2

XOR Finds bit-by-bit logical
XOR operation
between two operands

m8, r8, m16, r16 m8, r8, m16, r16,
d8, d16

OP1  OP1 ⊕ OP2

TEST It performs logical AND
operation between two
operands, updates flags
but result not stored in
any of the operands.

m8, r8, m16, r16 m8, r8, m16, r16,
d8, d16

FLAGS  OP1 . OP2

Shift Instructions:

SHL/SAL Shift left operand one
bit position/no. of bits
position in CL. A 0 is
inserted at lsb and msb
goes to CY.

m8, r8, m16, r16 1, CL

SHR Shift (logical) operand
right by CL times or
once. A 0 is inserted at
msb and lsb goes to CY.

m8, r8, m16, r16 1, CL

SAR Shift (arithmetic)
operand right by CL
times or once. Sign bit
is inserted at msb and
lsb goes to CY.

m8, r8, m16, r16 1, CL

Rotate Instructions:

ROL Rotate the operand left
once or by CL times.
msb goes to CY and lsb.

m8, r8, m16, r16 1, CL

ROR Rotate the operand
right once or by CL
times. lsb goes to CY
and msb.

m8, r8, m16, r16 1, CL

RCL Rotate through CY the
operand left once or by
CL times. msb goes to
CY and CY to lsb.

m8, r8, m16, r16 1, CL

RCR Rotate through CY the
operand right once or
by CL times. lsb goes to

m8, r8, m16, r16 1, CL

Dr. Saibal Kumar Pradhan, CEMK Page 17

Intel 8086/88 Microprocessor

CY and CY to msb.

STRING ISTRUCTIONS

A string is a series of bytes or words stored in successive memory locations. In the list a “/” is used to separate different mnemonics for
the same instruction. A “B” is used to identify the byte string and a “W” is used to identify the word string. For string instructions, SI and
DI will automatically be incremented if DF=0 and decremented if DF=1. SI/DI will be incremented or decremented by 1 for byte string and
by 2 for word string.

REP It is an instruction prefix. The string instruction next to REP will be
repeated CX times.

REPE/REPZ This is a variant of REP. The string instruction next to REPE/REPZ is
repeated until CX=0 or ZF=1.

REPNE/REPNZ This is the other variant of REP. The string instruction next to
REPNE/REPNZ is repeated until CX=0 or ZF=0.

MOVS/MOVSB/MOVSW Copies a string with byte/word data from data segment memory
pointed out by SI (DS:SI) to extra segment pointed out by DI (ES:DI).
The size of the string is indicated by CX.

COMPS/COMPSB/COMPSW Compares two strings with byte/word data stored at DS:SI and ES:DI.
The instruction is normally used with REPE/REPNE, this causes the
search to continue as long as an equal/not equal condition exists and
CX becomes not zero.

INS/INSB/INSW Reads string from an Input port.

OUTS/OUTSB/OUTSW Writes string to an output port.

SCAS/SCASB/SCASW It scans a string in extra segment addressed by DI to find a match
with AL/AX

LODS/LODSB/LODSW This instruction loads AL/AX with data stored in Data Segment
pointed out by SI.

STOS/STOSB/STOSW This instruction stores AL/AX to memory at extra segment pointed
out by DI.

PROGRAM EXECUTION TRANSFER INSTRUCTIONS:

These instructions are used to instruct the 8086/88 to start from a new location, rather than continuing in sequence.

Unconditional transfer instructions:

CALL This instruction transfers the program execution to a subroutine. The subroutine may be within the
current code segment or may be outside. Within segment, subroutine is called through CALL NEAR
and outside the current code segment, subroutine is called through CALL FAR. When 8086/88
executes a near call instruction, it pushes the offset address of the instruction next to CALL in stack
and when executes far call, it pushes segment as well as offset addresses of the next instruction in
stack. Near call is also called intra-segment call and far call is called as inter-segment call.

RET Return instruction appears as the last instruction of the subroutine. This instruction retrieves back the
value of IP or IP & CS from stack depending upon near and far call.

JMP This instruction transfers the execution to some other address. Like call, jump can also be near jump
or far jump.

Conditional transfer instructions:

These instructions are often used after a compare instruction. The terms below and above refer to unsigned binary numbers. Above
means larger in magnitude. The terms greater than or less than refer to signed binary numbers. Greater than means more positive. All
the conditional jumps are short jumps meaning the destination address will be within 128 bytes backward and 127 forward from the
current value of IP.

JA/JNBE Jump if above/not below equal

JAE/JNB Jump if above equal/not below

JB/JNAE Jump if below/not above equal

JC Jump if carry (set)

JE/JZ Jump if equal/zero

JG/JNLE Jump if greater/not less equal

JGE/JNL Jump if greater equal/not less

JL/JNGE Jump if less/not greater equal

JLE/JNG Jump if less equal/not greater

JNC Jump if no carry (reset)

JNE/JNZ Jump if not equal/not zero

JNO Jump if no overflow

Dr. Saibal Kumar Pradhan, CEMK Page 18

Intel 8086/88 Microprocessor

JNP/JPO Jump if no parity (parity bit is reset)/jump if parity odd

JNS Jump if no sign (positive)

JO Jump if overflow (overflow flag set)

JP/JPE Jump if parity (parity bit set)/even parity

JS Jump on sign (negative)

Iteration Control instructions:

These instructions are used to repeat a set of instructions for a few times. CX must be loaded with the number of iterations beforehand.
After execution of each LOOP instruction, CX is decremented by 1 and execution will jump to the destination specified after LOOP
instruction. When CX=0, execution goes to the instruction next to LOOP. LOOP is an unconditional loop. Other variants of loop i.e. LOOPE
or LOOPNE are conditional loops where loop may be stopped depending upon other flag condition even before CX=0.

LOOP Loop CX times

LOOPE/LOOPZ Loop until CX=0 or ZF=1

LOOPNE/LOOPNZ Loop until CX=0 or ZF=0

JCXZ Jump if CX=0

Interrupt instructions:

INT

INTO

IRET

PROCESSOR CONTROL INSTRUCTIONS

Flag set/clear instructions:

STC Set carry flag

CLC Clear carry flag

CMC Complement carry flag

STD Set direction flag

CLD Clear direction flag

STI Set interrupt flag

CLI Clear interrupt flag

External Hardware Synchronization Instructions:

HLT Halt

WAIT Wait

ESC

LOCK

No operation instruction:

NOP No operation

Dr. Saibal Kumar Pradhan, CEMK Page 19

Intel 8086/88 Microprocessor

Assembly Language Programming
 The sequence of commands used to tell a microprocessor what to do is called a program. The commands are

called instructions.
 Some part of it is called Monitor Program or Operating System and the other is called User Program or

Application Program.
 Operating Program basically organizes the inputs and the outputs with the system.
 User Program supplies the variables and their formats.
 Microprocessor can only understand the instructions coded in binary called machine language.
 Machine language is difficult, if not impossible, for human to handle.
 Assembly language was developed to provide mnemonics plus other features to make the programming

easy, faster and less prone to error.
 Instructions abbreviated in English letters to represent the operation to be performed by the microprocessor

are called mnemonics meaning memory-aid.
 Assembly language programs must be translated into machine code by a program called assembler.
 Assembly language is referred to as a low-level language because it deals directly with the internal structure

of the microprocessor.
 High level language like C, BASIC, Java etc. can also be used for programming.
 High level language is converted into machine code by a program called compiler.

Structure of Assembly Language:
 An assembly language program consists of a number of assembly language instructions used to tell the CPU

what to do.
 It also contains instructions giving direction to the assembler called directives.
 For example, MOV, ADD instructions are commands to the CPU whereas ORG, END are directives to the

assembler. ORG followed by an address tells the assembler to place the op-code at that memory location
while END indicates the end of the source code.

 An assembly language instruction consists of five fields:

[label:] mnemonic [destination operand] [source operand] [; comment]

 Brackets indicate that a field is optional and not all lines have them. Brackets should not be typed in while
typing an instruction.

 The label field allows the program to refer to a line of code by name. There are rules for writing the label like
type and maximum number of characters, starting characters etc. which is assembler specific.

 The assembly language mnemonic together with the operands forms the command for the CPU. For
example MOV AL, BL. MOV is the mnemonic, which is the abbreviation of data movement. The operands are
supplied by AL and BL registers. The data from source register BL moves to destination register AL.

 The comment field begins with a semicolon. Comments may be at the end of a line or on a new line itself.
The assembler ignores comments, but they should be present to make the program understandable to
others and at a later time.

Assembling and running of an 8088/86 program:
 A machine can only understand machine language. So assembly language program is to be translated back

into machine language. Human for convenience uses assembly language.

Dr. Saibal Kumar Pradhan, CEMK Page 20

test.hex

Other obj files test.obj

test.lst

test.asm

EDITOR PROGRAM

ASSEMBLER PROGRAM

LINKER PROGRAM

Load into:
Simulator for debugging
µP Trainer KIT for checking
EPROM to run the System.

Steps to create a Program

Intel 8086/88 Microprocessor

 Assembly language program is time consuming and difficult, if not impossible, to translate into machine
language manually.

 A PC based program called an assembler can do the same instantaneously. It takes an assembly language
program as input and produces an object file having extension .obj for machine codes.

 The assembly language file can be written in any EDITOR program like DOS EDIT, WINDOWS NOTEPAD etc.
which saves the file in ASCII format having extension .asm.

 Program can also be written in high level languages like ‘C’, BASIC, PASCAL. An interpreter program or a
compiler is used to translate the same into machine codes.

 All the object files created by assembler or compiler can then be combined to form a single machine
language program by another program called linker.

 The total flow diagram of machine language program development is depicted below.
 An Assembler produces a listing file having extension .lst containing the original assembly language

instructions and the corresponding binary codes. It also reports for any error encountered during
conversion.

 Programs can be developed faster in high level language than assembly language as the high-level language
uses higher building blocks. However, a program written in high level language usually occupies more space
in memory and takes more time to execute than that developed by assembly language.

 Programs that involve a lot of hardware-control are normally written in assembly language.

Dr. Saibal Kumar Pradhan, CEMK Page 21

PROCESS DECESION
?

INPUT/ OUTPUT START

SUB ROUTINE

TERMINATION

CONNECTOR OFF-PAGE CONNECTOR

Figure: Flowchart symbols

Intel 8086/88 Microprocessor

Program Development Steps:

Defining the problem

The first step in writing a program is to write down the operations to be done by the program and the order of
executing them. An example of a simple problem may be:

1. Read temperature from thermocouple sensor
2. Read ambient temperature from an ambient sensor
3. Add correction for ambient temperature
4. Save result in memory

For a program as simple as this, the four actions desired are very close to the assembly statements. However, for

more complex problem we need to develop more extensive outline of the problem so that the actions can be

replaced by assembly language statements.

Representing Program Operations

The formula or sequence of operations used to solve a problem is called algorithm. An algorithm can be written

using graphic shapes called flowcharts. Algorithm can also be written by pseudo codes using standard program

structures.

FLOWCHARTS

Different graphic shapes are used to represent different types of operations. The figure below shows some of

the commonly used graphic shapes:

Figure below shows a flowchart for a program to read 24 data samples from a thermocouple sensor at an

interval of 1 hour.

Dr. Saibal Kumar Pradhan, CEMK Page 22

YES

NO

START

READ VALUE FROM AMB. SENSOR

READ VALUE FROM SENSOR

ADD THE TWO

STORE THE RESULT IN MEMORY

24
SAMPLES ?

STOP

WAIT 1 HOUR

Intel 8086/88 Microprocessor

PSEUDOCODES

 Flowchart symbols are space consuming and are normally not used for large programs. Instead English like
statements called pseudo codes are used to represent the algorithm of the program.

Dr. Saibal Kumar Pradhan, CEMK Page 23

Intel 8086/88 Microprocessor

 Three basic operations viz. Sequence, Decision, and Iteration can represent the operations of any desired
problem.

 Sequence represents a series of actions
 Decision means choosing between two alternative actions
 Repetition means repeating a series of actions for a number of time
 Three to seven standard structures can represent all the operations in a typical program
 These standard structures are:

1. SIMPLE SEQUENCE
2. IF-THEN-ELSE
3. IF-THEN
4. CASE expressed as nested IF-THEN-ELSE
5. CASE
6. WHILE-DO LOOP
7. REPEAT UNTIL

Example of different cooking in different days of the week in the students’ Hostel using Flow Chart and Pseudo

Codes:

Pseudo Codes

IF MONDAY THEN

MAKE MUTTON MEAL

ELSE IF TUESDAY THEN

MAKE VEG MEAL

ELSE IF WEDNESDAY THEN

MAKE CHICKEN MEAL

:

:

:

ELSE IF SUNDAY THEN

MAKE SPECIAL MEAL

Flow Chart:

Dr. Saibal Kumar Pradhan, CEMK Page 24

MUTTON MEAL

MONDAY ?

TUESDAY ?

SUNDAY
?

Y

Y N

CHICKEN MEAL

Y
N

SPECIAL MEAL

Intel 8086/88 Microprocessor

Dr. Saibal Kumar Pradhan, CEMK Page 25

START

Initialize COUNT & POINTERS

Transfer a Byte

Adjust POINTERS

Decrement COUNT

COUNT = 0?

END

NO

YES

Intel 8086/88 Microprocessor

Programming Examples:
Examples-1: Flow Chart for transferring block of bytes data from one area of
memory to another

;--
;8086 Program to transfer a number of bytes from one place to another
;in memory. Let us also consider that code segment is in 8000H and
;data segment is at 2000H
;--

ORG 8000:100H
START: MOV AX, 2000H

MOV DS, AX
MOV SI, SOUR ;SOURCE MEMORY POINTER
MOV DI, DEST ;DESTINATION MEMORY POINTER
MOV CX, COUNT ;STRING ELEMENT COUNTER

RPT: MOV AL, [SI] ;MOVE SOURCE ELEMENT INTO AL REG
MOV [DI], AL ;STORE AL IN DESTINATION

INC SI ;SOURCE MEM POINTER INCREMENTED
INC DI ;DESTINATION MEM POINTER INCREMENTED

LOOP RPT

Dr. Saibal Kumar Pradhan, CEMK Page 26

Intel 8086/88 Microprocessor

STAY: JMP STAY

COUNT: EQU 100D
SOUR: EQU 100H
DEST: EQU 200H

END
Note:
 In case of word (16-bit) data transfer, word data transfer occurs through a
16-bit register and memory pointers will be incremented by two instead of
one as shown below:

ORG 8000:100H
START: MOV AX, 2000H

MOV DS, AX
MOV SI, SOUR ;SOURCE MEMORY POINTER
MOV DI, DEST ;DESTINATION MEMORY POINTER
MOV CX, COUNT ;STRING ELEMENT COUNTER

RPT: MOV AX, [SI] ;MOVE SOURCE ELEMENT INTO AX REG
MOV [DI], AX ;STORE AX IN DESTINATION

ADD SI, 02H ;SOURCE MEM POINTER INCREMENTED BY TWO

ADD DI, 02H ;DEST MEM POINTER INCREMENTED BY TWO

LOOP RPT
STAY: JMP STAY

COUNT: EQU 100D
SOUR: EQU 100H
DEST: EQU 200H

END

Dr. Saibal Kumar Pradhan, CEMK Page 27

START

Initialize COUNT & POINTERS

Exchange bytes

Adjust POINTERS

Decrement COUNT

COUNT = 0?

END

NO

YES

Intel 8086/88 Microprocessor

Examples-2: Exchange of two blocks of byte data

Flow Chart for exchanging two blocks of byte data from one area of memory
with another

ORG 8000:100H
START: MOV AX, 2000H

MOV DS, AX

MOV SI, SOUR ;SOURCE MEMORY POINTER
MOV DI, DEST ;DESTINATION MEMORY POINTER
MOV CX, COUNT ;STRING ELEMENT COUNTER

RPT: MOV AL, [SI] ;
XCHG [DI], AL ;EXCHANGE SOU DATA WITH DEST DATA
MOV [SI], AL ;

INC SI ;SOURCE MEM POINTER INCREMENTED BY TWO

INC DI ;DEST MEM POINTER INCREMENTED BY TWO

LOOP RPT
STAY: JMP STAY

Dr. Saibal Kumar Pradhan, CEMK Page 28

START

Initialize POINTERS

AL = LB of OP1

ADD LB of OP2 with ACC

END

Adjust ACC for Decimal addition

Increment POINTERS

AL = HB of OP1

ADC HB of OP2 with AL

Adjust ACC for Decimal addition

Store the LB of result
Store the HB of result

Intel 8086/88 Microprocessor

COUNT: EQU 100D
SOUR: EQU 100H
DEST: EQU 200H

END

Example-3: Flow Chart of a program that adds two 4-digit BCD numbers stored
in memory. Store the result also in memory.

Preamble: Let us consider that BCD numbers are stored in memory as packed
BCD i.e. stored as two digits per byte and they will be added two-digits at
a time in AL register as Decimal adjustment after addition takes place in AL
only.

Dr. Saibal Kumar Pradhan, CEMK Page 29

Intel 8086/88 Microprocessor

;---
; ADD TWO 4-DIGIT BCD NUMBERS STORED IN MEMORY.
; ALSO STORE THE RESULT IN MEMORY
;
; 8:18 PM 8/19/2004 WRITTEN BY SAIBAL PRADHAN
;---

ORG 8000:100H

DATA1: EQU 500H ;OP1 IN MEMORY 500-501H
DATA2: EQU 502H ;OP2 IN MEMORY 502-503H
RESULT: EQU 504H ;RESULT IN MEM 504-506H

ADDBCD: MOV SI, DATA1 ;MEMORY POINTER TO PICK UP OP1, OP2 AND TO
;STORE RESULT

MOV AX, [SI] ;LOAD OP1 IN AX
MOV BX, [SI]02H ;LOAD OP2 IN BX
ADD AL, BL ;LOWER TWO DIGITS ARE ADDED
DAA ;ADJUST FOR BCD ADDTION
XCHG AL, AH

ADC AL, BH ;HIGHER TWO DIGITS ARE ADDED TAKING CARE OF
;PREVIOUS CARRY, IF ANY

DAA
XCHG AL, AH
MOV [SI]04H, AX ;STORE THE 1ST TWO DIGITS OF THE RESULT

STAY: JMP STAY

Dr. Saibal Kumar Pradhan, CEMK Page 30

NO

YES

START

Initialize Data Segment
Initialize Data Pointers for Op-1, Op-2 & Result
Initialize Counter

Read Op-1 byte/word in a Register
Add Op-2 corresponding byte/word with Op-1
Store partial result in memory

Increment Pointers
Decrement Counter

Counter = 0?

STOP

Intel 8086/88 Microprocessor

More Examples:

Ex-4: Add two 64-bit data stored in memory and also store the result in memory.

Solution: Two 64-bit data cannot be added at a time. As 8086/88 can add either two 8-bit or two 16-bit data, we

have to add multi-byte data either byte-wise or word-wise.

Flow Chart:

;---
; TO ADD TWO 64-BIT DATA RESIDING IN MEMORY. RESULT IS ALSO STORED
; IN MEMORY.
; 9:45 PM 29/01/2015 WRITTEN BY DR. SAIBAL KUMAR PRADHAN
;---

.ORG 2000:100H
; INITIALIZATION OF POINTERS AND COUNTER

MOV AX, 1000H
MOV DS, AX ; DATA SEGMENT STARTS AT 10000H
MOV SI, 100H ; OP-1 POINTER
MOV BX, 110H ; OP-2 POINTER
MOV DI, 120H ; RESULT POINTER

Dr. Saibal Kumar Pradhan, CEMK Page 31

Intel 8086/88 Microprocessor

MOV CX, 04H ; 64-BIT DATA WILL BE ADDED WORD-WISE
CLC ; CLEAR CARRY FLAG

; ADDING CORRESPONDING WORDS OF OP-1 & OP-2
AGAIN: MOV AX, [SI]

ADC AX, [BX]
MOV [DI], AX

; PROCESSING OF POINTERS & COUNTER
INC SI
INC SI
INC BX
INC BX
INC DI
INC DI

LOOP AGAIN

; STORING THE FINAL CARRY
MOV AL, 00
ADC AL, 00
MOV [DI], AL

STOP: JMP STOP

Ex-5: Add one hundred bytes stored in memory. Justify the length of the result and also store it in memory.

Solution: One hundred bytes can be added with 99 ADD instructions and in worst case all the ADD instructions

may generate carries which when added can give 99D. This can easily be stored in a byte and so the result will

be a 16-bit data.

.ORG 2000:100H
START: MOV AX, 1000H

MOV DS, AX
MOV SI, 100H
MOV CX, 100D ; DATA COUNT
XOR AH, AH ; TAKE CARE CARRY, IF ANY

XOR AL, AL ; INITIAL SUM = 0

REPEAT: ADD AL, [SI]
JNC SKIP
INC AH

SKIP: INC SI
LOOP REPEAT
MOV DS:200H, AX ; STORE RESULT

STOP: JMP STOP

Dr. Saibal Kumar Pradhan, CEMK Page 32

Intel 8086/88 Microprocessor

Ex-6: Find the Nth term and sum of N terms of an Arithmetic Progression whose first term and common

difference are stored in 1000:100H and 1000:101H locations respectively. Store TN and SN in suitable memory.

Solution: For an AP, we know that

TN = a + (N-1).d

and, SN = (N/2).[(2a+(N-1).d]

Let us consider a, d and N are supplied through memory locations 1000:100H, 101H and 102H respectively. TN

and SN are considered to be word and double word data respectively and will be stored at 103H and 105H

respectively.

.ORG 2000:200H
START: MOV AX, 1000H

MOV DS, AX

; CALCULATION OF TN

MOV AL, DS:100H ; AL=a (8-BIT FORMAT)
CBW
MOV CX, AX ; CX=a (16-BIT FORMAT)
MOV BL, DS:101H ; BL=d
MOV AL, DS:102H ; AL=N
DEC AL ; AL=N-1
IMUL BL ; AX=(N-1).d
ADD AX, CX ; AX= a + (N-1).d = TN

MOV DS:103H, AX ; STORE TN

; CALCULATION OF SN

ADD AX, CX ; AX= a + (N-1).d +a = 2a +(N-1).d
MOV BL, DS:102H ; BL=N
SHR BL,1 ; BL=N/2
XCHG AX, BX
CBW
IMUL BX ; DX-AX=(N/2).[(2a+(N-1).d]=SN

MOV DS:105H, AX ; STORE SN

MOV DS:107H, DX ;
STOP: JMP STOP

Dr. Saibal Kumar Pradhan, CEMK Page 33

Intel 8086/88 Microprocessor

Pin Diagram of 8086/88

AD0 - AD15 (I/O): Address Data Bus

These lines constitute the time multiplexed memory/IO address during the first clock cycle (T1) and
data during T2, T3 and T4 clock cycles. A0 is analogous to BHE’ for the lower byte of the data bus,
pins D0-D7. A0 bit is Low during T1 state when a byte is to be transferred on the lower portion of
the bus in memory or I/O operations. 8-bit oriented devices tied to the lower half would normally
use A0 to condition chip select functions. These lines are active high and float to tri-state during
interrupt acknowledge and local bus "Hold acknowledge".

A19/S6, A18/S5, A17/S4, A16/S3 (0): Address/Status

During T1 state these lines are the four most significant address lines for memory operations.
During I/O operations these lines are low. During memory and I/O operations, status information is
available on these lines during T2, T3, and T4 states.

S6:

When Low, it indicates that 8086 is in control of the bus. During a "Hold acknowledge" machine
cycle, the 8086 tri-states the S6 pin and thus allows another bus master to take control of the bus.

S5:

The status of the interrupt enable flag bit is updated at the beginning of each cycle. The status
of the flag is indicated through this bit.

Dr. Saibal Kumar Pradhan, CEMK Page 34

Intel 8086/88 Microprocessor

S4 & S3:

Lines are decoded as follows:

S4 S3 Function

0 0 Extra segment access

0 1 Stack segment access

1 0 Code segment access

1 1 Data segment access

After the first clock cycle of an instruction execution, the A17/S4 and A16/S3 pins specify which
segment register generates the segment portion of the 8086 address. Thus by decoding these lines
and using the decoder outputs as chip selects for memory chips, up to 4 Megabytes (one Mega per
segment) of memory can be accesses. This feature also provides a degree of protection by
preventing write operations to one segment from erroneously overlapping into another segment
and destroying information in that segment.

BHE /S7 (O): Bus High Enable/Status

During T1 state the BHE should be used to enable data onto the most significant half of the data
bus, pins D15 - D8. Eight-bit oriented devices tied to the upper half of the bus would normally use
BHE to control chip select functions. BHE is Low during T1 state of read, write and interrupt
acknowledge cycles when a byte is to be transferred on the high portion of the bus.
The S7 status information is available during T2, T3 and T4 states. The signal is active Low and
floats to tri-state during "hold" state. This pin is Low during T1 state for the first interrupt
acknowledge cycle.

RD (O): READ

The Read strobe indicates that the processor is performing a memory or I/O read cycle. This signal
is active low during T2 and T3 states and the Tw states of any read cycle. This signal floats to tri-
state in "hold acknowledge cycle".

TEST (I)

TEST pin is examined by the "WAIT" instruction. If the TEST pin is Low, execution continues.
Otherwise, the processor waits in an "idle" state. This input is synchronized internally during each
clock cycle on the leading edge of CLK.

INTR (I): Interrupt Request

It is a level triggered input which is sampled during the last clock cycle of each instruction to
determine if the processor should enter into an interrupt acknowledge operation. A subroutine is
vectored to via an interrupt vector look up table located in system memory. It can be internally
masked by software resetting the interrupt enable bit INTR is internally synchronized. This signal is
active HIGH.

NMI (I): Non-Muskable Interrupt

An edge triggered input, causes a type-2 interrupt. A subroutine is vectored to via the interrupt
vector look up table located in system memory. NMI is not maskable internally by software. A

Dr. Saibal Kumar Pradhan, CEMK Page 35

Intel 8086/88 Microprocessor

transition from a LOW to HIGH on this pin initiates the interrupt at the end of the current
instruction. This input is internally synchronized.

Reset (I)

Reset causes the processor to immediately terminate its present activity. To be recognized, the
signal must be active high for at least four clock cycles, except after power-on which requires a 50
Micro Sec. pulse. It causes the 8086 to initialize registers DS, SS, ES, IP and flags to all zeros. It also
initializes CS to FFFF H. Upon removal of the RESET signal from the RESET pin, the 8086 will fetch
its next instruction from the 20 bit physical address FFFF0H. The reset signal to 8086 can be
generated by the 8284. (Clock generation chip). To guarantee reset from power-up, the reset input
must remain below 1.5 volts for 50 Micro sec. after Vcc has reached the minimum supply voltage of
4.5V.

Ready (I)

Ready is the acknowledgement from the addressed memory or I/O device that it will complete the
data transfer. The READY signal from memory or I/O is synchronized by the 8284 clock generator to
form READY. This signal is active HIGH. The 8086 READY input is not synchronized. Correct
operation is not guaranteed if the setup and hold times are not met.

CLK (I): Clock

Clock provides the basic timing for the processor and bus controller. It is asymmetric with 33% duty
cycle to provide optimized internal timing. Minimum frequency of 2 MHz is required, since the
design of 8086 processors incorporates dynamic cells. The maximum clock frequencies of the 8086-
4, 8086 and 8086-2 are 4MHz, 5MHz and 8MHz respectively.
Since the 8086 does not have on-chip clock generation circuitry, and 8284 clock generator chip
must be connected to the 8086 clock pin. The crystal connected to 8284 must have a frequency 3
times the 8086 internal frequency. The 8284 clock generation chip is used to generate READY,
RESET and CLK.

MN/MX (I): Maximum / Minimum

This pin indicates what mode the processor is to operate in. In minimum mode, the 8086 itself
generates all bus control signals. In maximum mode the three status signals are to be decoded to
generate all the bus control signals.
Minimum Mode Pins The following 8 pins function descriptions are for the 8086 in minimum mode;
MN/ MX = 1. The corresponding 8 pins function descriptions for maximum mode is explained later.

M/IO (O): Status line

This pin is used to distinguish a memory access or an I/O accesses. When this pin is Low, it
accesses I/O and when high it access memory. M / IO becomes valid in the T4 state preceding a bus
cycle and remains valid until the final T4 of the cycle. M/IO floats to 3 - state OFF during local bus
"hold acknowledge".

WR (O): Write

Indicates that the processor is performing a write memory or write IO cycle, depending on the state
of the M /IOsignal. WR is active for T2, T3 and Tw of any write cycle. It is active LOW, and floats to
3-state OFF during local bus "hold acknowledge ".

Dr. Saibal Kumar Pradhan, CEMK Page 36

Intel 8086/88 Microprocessor

INTA (O): Interrupt Acknowledge

It is used as a read strobe for interrupt acknowledge cycles. It is active LOW during T2, T3, and T4
of each interrupt acknowledge cycle.

DT/ R (O): DATA Transmit/Receive

In minimum mode, 8286/8287 transceiver is used for the data bus. DT/ R is used to control the
direction of data flow through the transceiver. This signal floats to tri-state off during local bus "hold
acknowledge".

DEN (O): Data Enable

It is provided as an output enable for the 8286/8287 in a minimum system which uses the
transceiver. DEN is active LOW during each memory and IO access. It will be low beginning with T2
until the middle of T4, while for a write cycle, it is active from the beginning of T2 until the middle
of T4. It floats to tri-state off during local bus "hold acknowledge".

HOLD & HLDA (I/O): Hold and Hold Acknowledge

Hold indicates that another master is requesting a local bus "HOLD". To be acknowledged, HOLD
must be active HIGH. The processor receiving the "HOLD " request will issue HLDA (HIGH) as an
acknowledgement in the middle of the T1-clock cycle. Simultaneous with the issue of HLDA, the
processor will float the local bus and control lines. After "HOLD" is detected as being Low, the
processor will lower the HLDA and when the processor needs to run another cycle, it will again drive
the local bus and control lines.

Maximum Mode:

 The following pins function descriptions are for the 8086/8088 systems in maximum mode (i.e..
MN/MX = 0). Only the pins which are unique to maximum mode are described below.

S2, S1, S0 (O): Status Pins

These pins are active during T4, T1 and T2 states and is returned to passive state (1,1,1 during T3
or Tw (when ready is inactive). These are used by the 8288 bus controller to generate all memory
and I/O operation) access control signals. Any change by S2, S1, S0 during T4 is used to indicate
the beginning of a bus cycle. These status lines are encoded as shown in table 3.

S2 S1 S0 Characteristics

0 0 0 Interrupt acknowledge

0 0 1 Read I/O port

0 1 0 Write I/O port

0 1 1 Halt

1 0 0 Code access

1 0 1 Read Memory

1 1 0 Write memory

1 1 1 Passive State

Dr. Saibal Kumar Pradhan, CEMK Page 37

Intel 8086/88 Microprocessor

QS0, QS1 (O): Queue – Status

Queue Status is valid during the clock cycle after which the queue operation is performed. QS0,
QS1 provide status to allow external tracking of the internal 8086 instruction queue. The condition
of queue status is shown in table 4.

Queue status allows external devices like In-circuit Emulators or special instruction set extension
co-processors to track the CPU instruction execution. Since instructions are executed from the 8086
internal queue, the queue status is presented each CPU clock cycle and is not related to the bus
cycle activity. This mechanism allows (1) A processor to detect execution of a ESCAPE instruction
which directs the co- processor to perform a specific task and (2) An in-circuit Emulator to trap
execution of a specific memory location.

QS1 QS1 Characteristics

0 0 No operation

0 1 First byte of opcode from queue

1 0 Empty the queue

1 1 Subsequent byte from queue

LOCK (O)

It indicates to another system bus master, not to gain control of the system bus while LOCK is
active Low. The LOCK signal is activated by the "LOCK" prefix instruction and remains active until
the completion of the instruction. This signal is active Low and floats to tri-state OFF during 'hold
acknowledge'. Example:

LOCK XCHG reg., Memory ; Register is any register and memory GT0

 ; is the address of the semaphore.

RQ/GT0 and RQ/GT1 (I/O): Request/Grant

These pins are used by other processors in a multi processor organization. Local bus masters of
other processors force the processor to release the local bus at the end of the processors current
bus cycle. Each pin is bi-directional and has an internal pull up resistors. Hence they may be left un-
connected.

Dr. Saibal Kumar Pradhan, CEMK Page 38

Intel 8086/88 Microprocessor

Dr. Saibal Kumar Pradhan, CEMK Page 39

Intel 8086/88 Microprocessor

Dr. Saibal Kumar Pradhan, CEMK Page 40

Intel 8086/88 Microprocessor

Dr. Saibal Kumar Pradhan, CEMK Page 41

Intel 8086/88 Microprocessor

Dr. Saibal Kumar Pradhan, CEMK Page 42

8051 Microcontroller

The 8051 is an 8 bit microcontroller originally developed by Intel in 1980. It is the world's most
popular microcontroller core, made by many independent manufacturers (truly multi-sourced).
There were 126 million 8051s (and variants) shipped in 1993!!

A typical 8051 contains:
 - CPU with boolean processor
 - 5 or 6 interrupts: 2 are external, 2 priority levels
 - 2 or 3 16-bit timer/counters
 - programmable full-duplex serial port (baud rate provided by one of the timers)
 - 32 I/O lines (four 8-bit ports)
 - RAM
 - ROM/EPROM in some models
The 8051 instruction set is optimized for the one-bit operations so often desired in real-world,
real-time control applications. The boolean processor provides direct support for bit
manipulation. This leads to more efficient programs that need to deal with binary input and
output conditions inherent in digital-control problems. Bit addressing can be used for test pin
monitoring or program control flags.
8051 Flavors

 The 8051 has the widest range of variants of any embedded controller on the market.
The smallest device is the Atmel 89c1051, a 20 Pin FLASH variant with 2 timers, UART, 20mA.
The fastest parts are from Dallas, with performance close to 10 MIPS! The most powerful chip
is the Siemens 80C517A, with 32 Bit ALU, 2 UARTS, 2K RAM, PLCC84 package, 8 x 16 Bit
PWMs, and other features.

Among the major manufacturers are:
 AMD Enhanced 8051 parts (no longer producing 80x51 parts)
 Atmel FLASH and semi-custom parts
 Dallas Battery backed, program download, and fastest variants
 Intel 8051 through 80c51gb / 80c51sl
 ISSI IS80C51/31 runs up to 40MHz
 Matra 80c154, low voltage static variants
 OKI 80c154, mask parts

Philips 87c748 thru 89c588 - more variants than anyone else
Siemens 80c501 through 80c517a, and SIECO cores
SMC COM20051 with ARCNET token bus network engine
SSI 80x52, 2 x HDLC variant for MODEM use

Internal Architecture of 8051:

The registers and memory map is very important to develop assembly language program. 8051 has 128
bytes RAM in the address range 00 – 7FH. It has also some special function registers (SFRs) like A, B, PSW, DPH,
DPL, SP etc. These registers are also having some addresses in the range between 80H – FFH. Some of the variants
of 8051 family like 8052 has 256 bytes of internal RAM. So apparently, the SFRs and the higher 128 bytes RAM
overlap each other. This is taken care of by using different addressing modes for different space.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 1

8-bit Registers supporting register addressing mode are:

A

R0

R1

R2

R2

R3

R4

R5

R6

R7

16-bit register supporting register addressing is DPTR

Other important registers not referred by their names but by their addresses are listed in the given table below:

Special Function Registers and their addresses:
SL Symbol Name Addr Bit Address

1 A* Accumulator E0H E7 E6 E5 E4 E3 E2 E1 E0

2 B* B register F0H F7 F6 F5 F4 F3 F2 F1 F0

3 PSW* Program Status Word D0H D7 D6 D5 D4 D3 D2 D1 D0

4 SP Stack Pointer 81H

5 DPTR Data Pointer (16-bit)

6 DPL DPTR Low Byte 82H

7 DPH DPTR High Byte 83H

8 P0* Port 0 80H 87 86 85 84 83 82 81 80

9 P1* Port 1 90H 97 96 95 94 93 92 91 90

10 P2* Port 2 A0H A7 A6 A5 A4 A3 A2 A1 A0

11 P3* Port 3 B0H B7 B6 B5 B4 B3 B2 B1 B0

12 IP* Interrupt Priority Control B8H BF BE BD BC BB BA B9 B8

13 IE* Interrupt Enable Control A8H AF AE AD AC AB AA A9 A8

14 TMOD Timer/Counter Mode Control 89H

15 TCON* Timer/Counter Control 88H 8F 8E 8D 8C 8B 8A 89 88

16 T2CON* Timer/Counter 2 Control C8H CF CE CD CC CB CA C9 C8

17 T2MOD Timer/Counter Mode Control C9H

18 TH0 Timer/Counter 0 High Byte 8CH

19 TL0 Timer/Counter 0 Low Byte 8AH

20 TH1 Timer/Counter 1 High Byte 8DH

21 TL1 Timer/Counter 1 Low Byte 8BH

22 TH2 Timer/Counter 2 High Byte CDH

23 TL2 Timer/Counter 2 Low Byte CCH

Prof. (Dr.) Saibal Pradhan, CEMK Page - 2

24 RCAP2H T/C 2 Capture Reg. High Byte CBH

25 RCAP2L T/C 2 Capture Register Low Byte CAH

26 SCON* Serial Control 98H 9F 9E 9D 9C 9B 9A 99 98

27 SBUF Serial Data Buffer 99H

28 PCON Power Control. 87H

Register Bank Selection Through PSW.4 and PSW.3

RS1 RS0 Register Bank Address
--
0 0 Bank 0 00H – 07H
0 1 Bank 1 08H – 0FH
1 0 Bank 2 10H – 17H
1 1 Bank 3 18H - 1FH

The 8051 can address 64KB program memory as well as 64KB data memory. Out of 64KB total program
memory, some are on-chip. Different variants of 8051 have different amounts of on-chip program memory. For
instance, 8051 has 4KB on-chip ROM. External Program and data memory (ROM and RAM both) can be interfaced
further to cater the need of the system.

Prof. (Dr.) Saibal Pradhan, CEMK Page - 3

CY AC F0 RS1 RS0 OV -- P

The register and memory map is shown in figure below:

80 - FFH

SFR
(Direct addressing)

Upper 128 Byte
RAM

in some Variants
like 8052

(Register Indirect
Addressing only,

@r0, r1)

O
ff

-C
h

ip
 C

o
d

e
A

re
a.

To
ta

l C
o

d
e

sp
ac

e
-

6
4

K
B

. A
d

d
re

ss
 R

an
ge

: 0
-F

FF
FH

.
(I

n
d

ex
ed

 a
d

d
re

ss
in

g
fo

r
d

at
a

ac
ce

ss
)

6
4

 K
B

 E
xt

er
n

al
 D

at
a

A
re

a.
 A

d
d

re
ss

 R
an

ge
:

0
-F

FF
FH

.
(R

eg
is

te
r

In
d

ir
ec

t
fo

r
fi

rs
t

2
56

 b
yt

es
 a

n
d

 In
d

ex
ed

 a
d

d
re

ss
in

g
fo

r
d

at
a

ac
ce

ss
)

30 – 7FH Byte addressable scratch pad memory.
Direct and
Register
Indirect
addressable
Area

2FH 7F 7E 7D 7C 7B 7A 79 78

Bit
addressable
Area.
(The hex
numbers in
the adjacent
cells are the
addresses of
128-bit
memory)

2EH 77 76 75 74 73 72 71 70

2DH 6F 6E 6D 6C 6B 6A 69 68

2CH 67 66 65 64 63 62 61 60

2BH 5F 5E 5D 5C 5B 5A 59 58

2AH 57 56 55 54 53 52 51 50

29H 4F 4E 4D 4C 4B 4A 49 48

28H 47 46 45 44 43 42 41 40

27H 3F 3E 3D 3C 3B 3A 39 38
O

n
-C

h
ip

 C
o

d
e

 A
re

a.
(I

n
d

ex
ed

 a
d

d
re

ss
in

g
fo

r
d

at
a

ac
ce

ss
)26H 37 36 35 34 33 32 31 30

25H 2F 2E 2D 2C 2B 2A 29 28

24H 27 26 25 24 23 22 21 20

23H 1F 1E 1D 1C 1B 1A 19 18

22H 17 16 15 14 13 12 11 10

21H 0F 0E 0D 0C 0B 0A 09 08

20H 07 06 05 04 03 02 01 00

18 – 1FH Register Bank # 3 and Stack Direct,
Register and
Reg. indirect
addressable
Area

10 – 17H Register Bank # 2 and Stack

08 – 0FH Register Bank # 1 and Stack

00 – 07H Register Bank # 0 (R0 – R7)

Prof. (Dr.) Saibal Pradhan, CEMK Page - 4

Assembly Language Programming

8051 Registers Structure
Registers are mostly 8-bits viz. A, B, PSW, DPL, DPH, R0-R7, SP etc. DPTR is a 16-bit register composed of DPH
and DPL.

Addressing Modes supported by 8051:
1. Immediate
2. Register Direct
3. Direct
4. Register Indirect and
5. Indexed

General Format of Assembly Language Instruction
Lebel: Mnemonic ; Comments

Here: MOV Destination, Source ; This is the format of MOV command

Immediate Addressing:
This addressing mode is used when a constant data to be loaded in a destination operand like internal RAM/
External Data RAM/ Internal Registers etc. “#” sign is used to represent a constant/immediate data

MOV A, #12H ; Place a value 12H in Accumulator
MOV B, #55 ; Place 55 in B Register
MOV 12H, #78H ; Place 78H in internal RAM at address 12H
MOV DPTR, #1234H ; Place 1234H in DPTR Register

Register Direct Addressing:
This mode is used when registers are used to hold the data to be manipulated.

MOV A, Rn ; where n is 0 – 7

Direct Addressing:
The amount of internal RAM in 8051 is 128 bytes having address range 00H – 7FH. This entire RAM can be
accessed by mentioning their addresses directly in the instructions. However, this addressing mode is normally used
for address range 30H – 7FH. RAM locations 00H – 1FH are assigned to Register banks and stack. Stack uses direct
addressing; however, register banks can also be addressed by their names. RAM locations 20H – 2FH, 16 bytes are
bit addressable area. These memory locations are used to save bit information and can be set or reset using SETB or
CLR instructions respectively. These 128 Bit addressable memories have address range 00H – 7FH.

MOV 70H, #12H
MOV A, 70H
MOV R6, 56H

Register Indirect Addressing:
In this addressing mode, memory addresses are supplied indirectly through R0 and R1. This mode is supported by
internal RAM and first 256 bytes in external data memory.

MOV A, @Ri ; i = 0 and 1 only
MOV A, @r0
MOV @r1, A
MOV 12H, @r1
MOVX A, @r1
MOVX @r0, A

Indexed Addressing:

Prof. (Dr.) Saibal Pradhan, CEMK Page - 5

 While accessing data from code and external data areas, the memory addresses are supplied through a 16-bit
register DPTR. This mode is very useful in accessing look up table stored in code memory.

MOVC A, @A+DPTR
MOVX A, @DPTR
MOVX @DPTR, A

8051 Instruction Set Summary

SL Mnemonic Operands Description Byte
T

States

Flags affected

C OV AC

A. Data Transfer Group

1 MOV A, Rn Move register to Acc 1 12

2 MOV A, direct Move direct byte to Acc 2 12

3 MOV A, @Ri Move indirect to Acc 1 12

4 MOV A, # data 8 Move immediate data to Acc 2 12

5 MOV Rn, A Move Acc to register 1 12

6 MOV Rn, direct Move direct byte to register 2 24

7 MOV Rn, # data 8 Move immediate data to register 2 12

8 MOV direct, A Move Acc to direct byte 2 12

9 MOV direct, Rn Move register to direct byte 2 24

10 MOV direct, direct Move direct to direct in internal RAM 3 24

11 MOV direct, @Ri Move indirect RAM to direct byte 2 24

12 MOV direct, # data 8 Move immediate data to direct byte 3 24

13 MOV @Ri, A Move Acc to indirect RAM 1 12

14 MOV @Ri, direct Move direct byte to indirect RAM 2 24

15 MOV @Ri, # data 8 Move immediate data to indirect RAM 2 12

16 MOV DPTR, # data 16 Load data pointer with 16 bit constant 3 24

17 MOVC A, @A+DPTR Move code byte relative to DPTR to Acc 1 24

18 MOVC A, @A+PC Move code byte relative to PC to Acc 1 24

19 MOVX A, @Ri Move external RAM (8-bit addr) data to Acc 1 24

20 MOVX A, @DPTR Move external RAM (16-bit addr) data to Acc 1 24

21 MOVX @Ri, A Move Acc to external RAM 1 24

Prof. (Dr.) Saibal Pradhan, CEMK Page - 6

22 MOVX @DPTR, A 1 24

23 PUSH direct Push direct byte onto Stack 2 24

24 POP direct Pop direct byte from Stack 2 24

25 XCH A, Rn Exchange Acc with register 1 12

26 XCH A, direct Exchange Acc with direct 2 12

27 XCH A, @Ri Exchange Acc with indirect 1 12

28 XCHD A, @Ri Exchange low order digit indirect with Acc 1 12

B. Arithmetic Operations

30 ADD A, Rn Add register to Acc 1 12 x x x

31 ADD A, direct Add direct to Acc 2 12 x x x

32 ADD A, @Ri Add indirect to Acc 1 12 x x x

33 ADD A, # data 8 Add immediate data to Acc 2 12 x x x

34 ADC A, Rn Add with Carry reg to Acc 1 12 x x x

35 ADC A, direct Add with Carry direct to Acc 2 12 x x x

36 ADC A, @Ri Add with Carry indirect to Acc 1 12 x x x

37 ADC A, # data 8 Add with Carry immediate to Acc 2 12 x x x

38 SUBB A, Rn Sub with borrow reg from Acc 1 12 x x x

39 SUBB A, direct Sub with borrow direct from Acc 2 12 x x x

40 SUBB A, @Ri Sub with borrow indirect from Acc 1 12 x x x

41 SUBB A, # data 8 Sub with borrow immediate from Acc 2 12 x x x

42 INC A Increment Acc by one 1 12

43 INC Rn Increment Reg by one 1 12

44 INC direct Increment direct by one 2 12

45 INC @R0 Increment indirect by one 1 12

46 INC @R1 1 12

47 DEC A Decrement Acc by one 1 12

48 DEC Rn Decrement reg by one 1 12

49 DEC direct Decrement direct by one 2 12

Prof. (Dr.) Saibal Pradhan, CEMK Page - 7

50 DEC @Ri Decrement indirect by one 1 12

51 INC DPTR Increment data pointer by one 1 24

52 MUL AB Multiply A & B, Result in BA 1 48 0 x

53 DIV AB Divide A by B, A 1 48 0 x

54 DA A Decimal adjust Acc 1 12 x

C. Logical Operations

55 ANL A, Rn AND register to Acc 1 12

56 ANL A, direct AND direct byte to Acc 2 12

57 ANL A, @Ri AND indirect RAM to Acc 1 12

58 ANL A, # data 8 AND immediate data to Acc 2 12

59 ANL direct, A AND Acc to direct byte 2 12

60 ANL direct, # data 8 AND immediate data to direct byte 3 24

61 ORL A, Rn OR reg to Acc 1 12

62 ORL A, direct OR direct to Acc 2 12

63 ORL A, @Ri OR indirect to Acc 1 12

64 ORL A, # data 8 OR immediate data to Acc 2 12

65 ORL direct, A OR Acc to direct 2 12

66 ORL direct, # data 8 OR immediate data to Direct 3 24

67 XRL A, Rn Ex-OR reg to Acc 1 12

68 XRL A, direct Ex-OR direct to Acc 2 12

69 XRL A, @Ri Ex-OR indirect to Acc 1 12

70 XRL A, # data 8 Ex-OR immediate data to Acc 2 12

71 XRL direct, A Ex-OR Acc to direct 2 12

72 XRL direct, # data 8 Ex-OR immediate data to Direct 3 24

73 CLR A Clear Acc 1 12

74 CPL A Compliment Acc 1 12

75 RL A Rotate Acc left 1 12

76 RLC A Rotate Acc left through carry 1 12 x

Prof. (Dr.) Saibal Pradhan, CEMK Page - 8

77 RR A Rotate Acc right 1 12

78 RRC A Rotate Acc right through carry 1 12 x

79 SWAP A Swap nibbles within Acc 1 12

D. Boolean Variable Manipulation

80 CLR C Clear carry flag 1 12 0

81 CLR bit Clear direct bit 2 12

82 SETB C Set carry 1 12 1

83 SETB bit Set direct bit 2 12

84 CPL C Complement carry 1 12 x

85 CPL bit Complement direct bit 2 12

86 ANL C, bit AND direct bit to carry 2 24 x

87 ANL C, /bit AND complement of direct bit to carry 2 24 x

88 ORL C, bit OR bit to Carry Flag 2 24 x

89 ORL C, /bit OR complement of bit to Carry Flag 2 24 x

90 MOV C, bit Move direct bit to carry 2 12 x

91 MOV bit, C Move carry to direct bit 2 24

92 JC rel Jump if carry is set 2 24

93 JNC rel Jump if carry is not set 2 24

94 JB bit, rel Jump if bit is set 3 24

95 JNB bit, rel Jump if bit is not set 3 24

96 JBC bit, rel Jump if direct bit set and clear bit 3 24

E. Program Branching

97 ACALL addr 11 Absolute subroutine call 2 24

98 LCALL addr 16 Long Subroutine call 3 24

99 RET Return from subroutine 1 24

100 RETI Return from interrupt subroutine 1 24

101 AJMP addr 11 Absolute jump 2 24

102 LJMP addr 16 Long jump 3 24

Prof. (Dr.) Saibal Pradhan, CEMK Page - 9

103 SJMP rel Short jump (relative addr) 2 24

104 JMP @A+DPTR Jump indirect relative to DPTR 1 24

105 JZ rel Jump if Acc is zero 2 24

106 JNZ rel Jump if Acc is not zero 2 24

107 CJNE A, direct, rel Compare direct with Acc and jump if not equal 3 24 x

108 CJNE A, # data 8, rel Compare data with Acc and jump if not equal 3 24 x

109 CJNE Rn, # data 8, rel Compare data with reg and jump if not equal 3 24 x

110 CJNE
@Ri, # data 8,
rel

Compare data with indirect and jump if not
equal

3 24 x

111 DJNZ Rn, rel Decrement reg by one and jump if not zero 2 24

112 DJNZ direct, rel Decrement direct by one and jump if not zero 3 24

113 NOP No operation No operation 1 12

Prof. (Dr.) Saibal Pradhan, CEMK Page - 10

Program examples

1. Write an 8051 Assembly Language Program to transfer a number of
bytes from one place to another in memory (small string having 255
or less elements)

Both the blocks of data may be in internal/external RAM or one in internal RAM and the other in external RAM.
Internal RAM and first 256 bytes of external RAM can be addressed indirectly by R0 and R1. However, data in the
external RAM can be addressed indirectly by dptr anywhere in the entire 64KB space.

Case – I: Both the blocks are in internal RAM

.ORG 100H
MOV R0, 30H ; R0 points the source block
MOV R1, 40H ; R1 points the destination block
MOV R2, 10D ; No of bytes present in the block is 10

LOOP: MOV A, @R0

MOV @R1, A
INC R0
INC R1
DJNZ R2, LOOP

STOP: SJMP STOP

Case-II: One block in internal RAM (destination) and other in external RAM within 256 bytes boundary.

.ORG 100H
MOV R0, 30H ; R0 points the source block in external RAM
MOV R1, 40H ; R1 points the destination block in internal RAM
MOV R2, 10D ; No of bytes present in the block is 10

LOOP: MOVX A, @R0

MOV @R1, A
INC R0
INC R1
DJNZ R2, LOOP

STOP: SJMP STOP

Case-III: One block in internal RAM (destination) and other in external RAM inside/outside 256 bytes boundary.

.ORG 100H
MOV DPTR, 0030H ; DPTR points the source block in external RAM
MOV R1, 40H ; R1 points the destination block in internal RAM
MOV R2, 10D ; No of bytes present in the block is 10

LOOP: MOVX A, @DPTR

MOV @R1, A
INC DPTR
INC R1
DJNZ R2, LOOP

STOP: SJMP STOP

Prof. (Dr.) Saibal Pradhan, CEMK Page - 11

Case-III: Both the blocks are in external RAM

.ORG 100H
MOV DPTR, 1234H ; DPTR points the source block in external RAM
MOV R1, 40H ; R1 points the destination block also in external RAM
MOV R2, 10D ; No of bytes present in the block is 10

LOOP: MOVX A, @DPTR

MOVX @R1, A
INC DPTR
INC R1
DJNZ R2, LOOP

STOP: SJMP STOP

2. Write an 8051 Assembly Language Program to interchange two blocks
of data residing in internal RAM

.ORG 2000H
MOV R0, #30H ; R0 points one block
MOV R1, #40H ; R1 points another block
MOV R2, #10H ; No of data in both the blocks is 16

RPT: MOV A, @R0 ; Byte exchanged between two blocks
MOV R3, A
MOV A, @R1
MOV @R0, A
MOV A, R3
MOV @R1, A

INC R0
INC R1
DJNZ R2, RPT

STOP: SJMP STOP

3. Write an 8051 Assembly Language Program to add to 32-bit data
stored in internal RAM and store the result in internal RAM only.

.ORG 1000H
MOV R0, #30H ; OP1 pointer
MOV R1, #34H ; OP2 pointer
MOV R2, #38H ; Result pointer
MOV R3, #04H ; Length of the operands (in byte)

CLR C
AGN: MOV A, @R0

ADC A, @R1 ; Partial result in Acc
PUSH 00H ; R0 is stored in stack
MOV 00, R2 ; R0 is modified by the address of destination block storing result
MOV @R0, A ; Partial result is stored in memory pointed out by @R0
POP 00H ; R0 is retrieved from stack

Prof. (Dr.) Saibal Pradhan, CEMK Page - 12

INC R0
INC R1
INC R2

DJNZ R3, AGN ; Repeat process until partial additions are completed

CLR A ; Carry stored, if any.
ADC A, #00H
MOV 00, R2
MOV @R0, A

STOP: SJMP STOP

4. Write an 8051 Assembly Language Program to count number of positive
and negative data present in a list residing in internal RAM.

.ORG 2000H
MOV R0, #30H ; R0 points the list having both positive and negative data
MOV R1, #10D ; R1 counts number of data not yet counted
MOV R2, #00H ; R2 counts number of positive data
MOV R3, #00H ; R3 counts number of negative data

LOOP: MOV A, @R0
JB E7H, NEG ; E7 is the address of msb of the accumulator indicating sign of the data

POS: INC R2
SJMP SKIP

NEG: INC R3
SKIP: INC R0

DJNZ R1, LOOP
STOP: SJMP STOP

5. Write an 8051 Assembly Language Program to add two 4-digit BCD
numbers residing in internal RAM in packed form and also store the
result (5-digit) in internal RAM.

.ORG 1000H
MOV R0, #30H ; Starting address of the first 4-digit packed BCD number
MOV R1, #32H
MOV R2, #34H
MOV R3, #02H ; R3 counting partial addition still left
CLR C

RPT: MOV A, @R0
ADC A, @R1
DA A
PUSH 00H
MOV R0, 02H
MOV @R0, A
POP 00H

INC R0
INC R1
INC R2

Prof. (Dr.) Saibal Pradhan, CEMK Page - 13

DJNZ R3, RPT ; Repeat addition, if left

MOV A, #00H ; Store the carry, if any, as the last byte of the result
ADC A, #00H

MOV R0, 02H
MOV @R0, A

STOP: SJMP STOP

6. Write an 8051 Assembly Language Program to add N (<256) 8-bit data
residing in external RAM. Store the result (2-byte) in internal
RAM.

.ORG 1000H
MOV DPTR, #1234H ; Starting address of the N data
MOV R0, #100D ; R0 counts the number of data to be still added
CLR A
MOV R1, A ; R1 counts number of times the carry is generated giving the ms byte of result

RPT: PUSH E0H ; Accumulator stored in stack before being modified
MOVX A, @DPTR
MOV R2, A
POP E0H ; Accumulator is restored
ADD A, R2
JNC SKIP
INC R1

SKIP: INC DPTR
DJNZ R0, RPT

MOV 30H, A ; 16-bit result is stored in 30H (lsb) and 31H (msb)
MOV 31H, R1

STOP: SJMP STOP

7. Write an 8051 Assembly Language Program to multiply two 8-bit
numbers residing in internal RAM. Also store the result (2-byte) in
internal RAM.

.ORG 200H
MOV A, 40H ; OP1 is taken in Acc
MOV F0H, 41H ; OP2 is taken in Register B
MUL AB

MOV 42H, A ; lsb of the result in Acc is stored in 42H memory
MOV 43H, F0H ; msb of the result in Register B is stored in 43H memory

STOP: SJMP STOP

Prof. (Dr.) Saibal Pradhan, CEMK Page - 14

8. Write an 8051 Assembly Language Program to divide an 8-bit number
by an 8-bit number residing in internal RAM. Also store the result
in quotient and remainder form in internal RAM.

.ORG 300H
MOV A, 30H ; dividend is taken in Accumulator
MOV B, 31H ; divisor is taken in register B
DIV AB ; quotient in A and remainder in B

MOV 32H, A ; quotient stored in 32H memory
MOV 33H, B ; remainder stored in 33H memory

STOP: SJMP STOP

Prof. (Dr.) Saibal Pradhan, CEMK Page - 15

